k-Nearest Neighbour method in functional nonparametric regression

被引:127
|
作者
Burba, Florent [1 ]
Ferraty, Frederic [1 ]
Vieu, Philippe [1 ]
机构
[1] Univ Toulouse 3, IMT, F-31062 Toulouse, France
关键词
functional data; nonparametric regression; kNN estimator; rate of convergence; random bandwidth; CONVERGENCE;
D O I
10.1080/10485250802668909
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this article is to study the k-nearest neighbour (kNN) method in nonparametric functional regression. We present asymptotic properties of the kNN kernel estimator: the almost-complete convergence and its rate. Then, we illustrate the effectiveness of this method by comparing it with the traditional kernel approach first on simulated datasets and then on a real chemometrical example. We also present in this article an important technical tool which could be useful in many other situations than ours.
引用
收藏
页码:453 / 469
页数:17
相关论文
共 50 条
  • [1] Adaptive nonparametric regression with the K-nearest neighbour fused lasso
    Padilla, Oscar Hernan Madrid
    Sharpnack, James
    Chen, Yanzhen
    Witten, Daniela M.
    [J]. BIOMETRIKA, 2020, 107 (02) : 293 - 310
  • [2] K-Nearest Neighbor Method with Principal Component Analysis for Functional Nonparametric Regression
    Ismaeel, Shelan Saied
    Omar, Kurdistan M. Taher
    Wang, Bo
    [J]. BAGHDAD SCIENCE JOURNAL, 2022, 19 (06) : 1612 - 1617
  • [3] ASYMPTOTIC DISTRIBUTION OF ROBUST k-NEAREST NEIGHBOUR ESTIMATOR FOR FUNCTIONAL NONPARAMETRIC MODELS
    Attouch, Mohammed Kadi
    Benchikh, Tawfik
    [J]. MATEMATICKI VESNIK, 2012, 64 (04): : 275 - 285
  • [4] K-Nearest Neighbor Estimation of Functional Nonparametric Regression Model under NA Samples
    Hu, Xueping
    Wang, Jingya
    Wang, Liuliu
    Yu, Keming
    [J]. AXIOMS, 2022, 11 (03)
  • [5] A k-nearest neighbor approach for functional regression
    Laloe, Thomas
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (10) : 1189 - 1193
  • [6] Size of wallet estimation: Application of K-nearest neighbour and quantile regression
    Jhamtani, Aashish
    Mehta, Ritu
    Singh, Sanjeet
    [J]. IIMB MANAGEMENT REVIEW, 2021, 33 (03) : 184 - 190
  • [7] Balanced k-nearest neighbour imputation
    Hasler, Caren
    Tille, Yves
    [J]. STATISTICS, 2016, 50 (06) : 1310 - 1331
  • [8] k-Nearest Neighbour Classifiers - A Tutorial
    Cunningham, Padraig
    Delany, Sarah Jane
    [J]. ACM COMPUTING SURVEYS, 2021, 54 (06)
  • [9] A k-nearest neighbour method for managing the evolution of a learning base
    Henry, JL
    [J]. ICCIMA 2001: FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, PROCEEDINGS, 2001, : 357 - +
  • [10] A DEPTH-BASED MODIFICATION OF THE K-NEAREST NEIGHBOUR METHOD
    Vencalek, Ondrej
    Hlubinka, Daniel
    [J]. KYBERNETIKA, 2021, 57 (01) : 15 - 37