MARKOV PARTITIONS REFLECTING THE GEOMETRY OF x2, x3

被引:1
|
作者
Ward, Thomas [1 ]
Yayama, Yuki [2 ]
机构
[1] Univ E Anglia, Sch Math, Norwich NR4 7TJ, Norfolk, England
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
基金
英国工程与自然科学研究理事会;
关键词
Markov partition; expansive subdynamics; solenoid; ENTROPY RANK-ONE; EXPANSIVE SUBDYNAMICS; DYNAMICAL-SYSTEMS; AUTOMORPHISMS; SOLENOIDS;
D O I
10.3934/dcds.2009.24.613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an explicit geometric description of the x2, x3 system, and use this to study a uniform family of Markov partitions related to those of Wilson and Abramov. The behaviour of these partitions is stable across expansive cones and transitions in this behaviour detect the non-expansive lines.
引用
收藏
页码:613 / 624
页数:12
相关论文
共 50 条
  • [1] FACTORIZATION IN K[X2,X3]
    ANDERSON, DF
    CHAPMAN, S
    INMAN, F
    SMITH, WW
    ARCHIV DER MATHEMATIK, 1993, 61 (06) : 521 - 528
  • [2] CANCELLATION IN SEMIGROUPS IN WHICH X2=X3
    BROWN, TC
    SEMIGROUP FORUM, 1990, 41 (01) : 49 - 53
  • [3] Empirical Approach to the x2, x3 Conjecture
    Downarowicz, Tomasz
    Huczek, Dawid
    EXPERIMENTAL MATHEMATICS, 2019, : 252 - 268
  • [4] The equation x1/x2 + x2/x3 + x3/x4 + x4/x1 = n
    Dofs, Erik
    Nguyen Xuan Tho
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (01) : 75 - 87
  • [5] X2 AND X3 INVARIANT-MEASURES AND ENTROPY
    RUDOLPH, DJ
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 : 395 - 406
  • [6] 1/x3=1/x1+1/x2
    馬明
    数学通报, 1965, (11) : 16 - 17
  • [7] D[X2, X3] over an integral domain D
    Anderson, DF
    Chang, GW
    Park, J
    COMMUTATIVE RING THEORY AND APPLICATIONS, 2003, 231 : 1 - 14
  • [8] The pure rotational spectra of TiO(X3Δ) and TiN(X2Σ+)
    Namiki, K
    Saito, S
    Robinson, JS
    Steimle, TC
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1998, 191 (01) : 176 - 182
  • [9] SPECTRAL PROPERTIES OF OPERATOR-DELTA-1+9(X1,X2,X3) U WITH ALMOST PERIODIC Q(X1,X2,X3)
    BURNAT, M
    PALCZEWSKI, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (10): : 917 - 923
  • [10] CHARACTERIZING STRONG 2-GENERATORS IN K[X2,X3]
    CHAPMAN, ST
    HOUSTON JOURNAL OF MATHEMATICS, 1990, 16 (02): : 217 - 229