Estimating equation - based causality analysis with application to microarray time series data

被引:3
|
作者
Hu, Jianhua [1 ]
Hu, Feifang [2 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Div Quantitat Sci, Houston, TX 77030 USA
[2] Univ Virginia, Dept Stat, Charlottesville, VA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Chi-square approximation; Estimating equation; F-test; False-positive rate; Granger causality; Time-course data; VARIANCE-STABILIZING TRANSFORMATIONS; MARGINAL STRUCTURAL MODELS; FALSE DISCOVERY RATE; GENE-EXPRESSION; CELL-CYCLE; IDENTIFICATION; COHERENCE;
D O I
10.1093/biostatistics/kxp005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microarray time-course data can be used to explore interactions among genes and infer gene network. The crucial step in constructing gene network is to develop an appropriate causality test. In this regard, the expression profile of each gene can be treated as a time series. A typical existing method establishes the Granger causality based on Wald type of test, which relies on the homoscedastic normality assumption of the data distribution. However, this assumption can be seriously violated in real microarray experiments and thus may lead to inconsistent test results and false scientific conclusions. To overcome the drawback, we propose an estimating equation-based method which is robust to both heteroscedasticity and nonnormality of the gene expression data. In fact, it only requires the residuals to be uncorrelated. We will use simulation studies and a real-data example to demonstrate the applicability of the proposed method.
引用
收藏
页码:468 / 480
页数:13
相关论文
共 50 条
  • [1] A time series analysis of microarray data
    Erdal, S
    Ozturk, O
    Armbruster, D
    Ferhatosmanoglu, H
    Ray, WC
    BIBE 2004: FOURTH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, PROCEEDINGS, 2004, : 366 - 375
  • [2] Periodicity identification of microarray time series data based on spectral analysis
    Choong, Miew Keen
    Lye, Kong Chen
    Levy, David
    Yan, Hong
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 1281 - +
  • [3] A POCS-based method for estimating unobserved values in microarray time-series data
    Zeng, Jia
    Yan, Hong
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 3898 - 3902
  • [4] Causality and pathway search in microarray time series experiment
    Mukhopadhyay, Nitai D.
    Chatterjee, Snigdhansu
    BIOINFORMATICS, 2007, 23 (04) : 442 - 449
  • [5] Estimating granger causality from fourier and wavelet transforms of time series data
    Dhamala, Mukeshwar
    Rangarajan, Govindan
    Ding, Mingzhou
    PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [6] Analysis techniques for microarray time-series data
    Filkov, V
    Skiena, S
    Zhi, JZ
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (02) : 317 - 330
  • [7] Comment on causality and pathway search in microarray time series experiment
    Nagarajan, Radhakrishnan
    Upreti, Meenakshi
    BIOINFORMATICS, 2008, 24 (07) : 1029 - 1032
  • [8] Reconstructing Gene Networks from Microarray Time-Series Data via Granger Causality
    Luo, Qiang
    Liu, Xu
    Yi, Dongyun
    COMPLEX SCIENCES, PT 1, 2009, 4 : 196 - 209
  • [9] Interactive visual analysis of time-series microarray data
    Jeong, Dong Hyun
    Darvish, Alireza
    Najarian, Kayvan
    Yang, Jing
    Ribarsky, William
    VISUAL COMPUTER, 2008, 24 (12): : 1053 - 1066
  • [10] Interactive visual analysis of time-series microarray data
    Dong Hyun Jeong
    Alireza Darvish
    Kayvan Najarian
    Jing Yang
    William Ribarsky
    The Visual Computer, 2008, 24 : 1053 - 1066