Wire and Arc Additive Manufacturing of Aluminum Components

被引:102
|
作者
Koehler, Markus [1 ]
Fiebig, Sierk [2 ]
Hensel, Jonas [1 ]
Dilger, Klaus [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Joining & Welding, Langer Kamp 6, D-38106 Braunschweig, Germany
[2] Volkswagen AG, Githorner Str 180, D-38037 Braunschweig, Germany
关键词
additive manufacturing; WAAM; cold metal transfer; 4047-aluminum; 5356-aluminum; welding process; mechanical properties;
D O I
10.3390/met9050608
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An increasing demand for flexibility and product integration, combined with reduced product development cycles, leads to continuous development of new manufacturing technologies such as additive manufacturing. Wire and arc additive manufacturing (WAAM) provides promising technology for the near net-shape production of large structures with complex geometry, using cost efficient production resources such as arc welding technology and wire materials. Compared to powder-based additive manufacturing processes, WAAM offers high deposition rates as well as enhanced material utilization. Because of the layer-by-layer built up approach, process conditions such as energy input, arc characteristics, and material composition result in a different processability during the additive manufacturing process. This experimental study aims to describe the effects of the welding process on buildup accuracy and material properties during wire arc additive manufacturing of aluminum structures. Following a process development using pulse cold metal transfer (CMT-P), linear wall samples were manufactured with variations of the filler metal. The samples were analyzed in terms of surface finishing, hardness, and residual stress. Furthermore, mechanical properties were determined in different building directions.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] Wire and arc additive manufacturing for strengthening of metallic components
    Dahaghin, H.
    Motavalli, M.
    Moshayedi, H.
    Zahrai, S. M.
    Ghafoori, E.
    THIN-WALLED STRUCTURES, 2024, 203
  • [2] Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing
    Langelandsvik, Geir
    Akselsen, Odd M.
    Furu, Trond
    Roven, Hans J.
    MATERIALS, 2021, 14 (18)
  • [3] Wire and arc additive manufacturing of aluminum alloy lattice structure
    Li Yongjie
    Yu Shengfu
    Chen Ying
    Yu Runzhen
    Shi Yusheng
    JOURNAL OF MANUFACTURING PROCESSES, 2020, 50 : 510 - 519
  • [4] Research progress in wire arc additive manufacturing of aluminum alloys
    Han Q.
    Fu R.
    Hu J.
    Guo Y.
    Han Y.
    Wang J.
    Ji T.
    Lu J.
    Liu C.
    Cailiao Gongcheng/Journal of Materials Engineering, 2022, 50 (04): : 62 - 73
  • [5] Fundamental Aspects of Wire Arc Additive Manufacturing for Aluminum Foams
    Suzuki, Ryosuke
    Ikeda, Takaya
    Fujiwara, Keishi
    Mita, Kazuya
    Hangai, Yoshihiko
    Fujii, Hidetoshi
    Kobayashi, Shigeaki
    MATERIALS TRANSACTIONS, 2024, 65 (06) : 672 - 676
  • [6] A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium
    Derekar, K. S.
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (08) : 895 - 916
  • [7] Investigation of Arc Stability in Wire Arc Additive Manufacturing of 2319 Aluminum Alloy
    Gao, Qiyu
    Lyu, Feiyue
    Wang, Leilei
    Zhan, Xiaohong
    Materials, 2024, 17 (21)
  • [8] A Finite Element Study of Wire Arc Additive Manufacturing of Aluminum Alloy
    Han, Yousung
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [9] Normalized evaluation for wire arc additive manufacturing of 2319 aluminum alloy
    Lyu, Feiyue
    Wang, Leilei
    Dou, Zhiwei
    Liu, Shengxin
    Du, Mingzhen
    Gao, Chuanyun
    Zhan, Xiaohong
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (03): : 137 - 148
  • [10] Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)
    Cam, Gurel
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 77 - 85