A variance-based method to rank input variables of the Mesh Adaptive Direct Search algorithm

被引:9
|
作者
Adjengue, Luc [1 ]
Audet, Charles [1 ,2 ]
Ben Yahia, Imen [1 ,2 ]
机构
[1] Ecole Polytech, Dept Math & Genie Ind, Montreal, PQ H3C 3A7, Canada
[2] Ecole Polytech, Gerad, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Direct search; Ranking of variables; Blackbox optimization; OPTIMIZATION; CONVERGENCE;
D O I
10.1007/s11590-013-0688-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Mesh Adaptive Direct Search algorithm (MADS) algorithm is designed for nonsmooth blackbox optimization problems in which the evaluation of the functions defining the problems are expensive to compute. The MADS algorithm is not designed for problems with a large number of variables. The present paper uses a statistical tool based on variance decomposition to rank the relative importance of the variables. This statistical method is then coupled with the MADS algorithm so that the optimization is performed either in the entire space of variables or in sub-spaces associated with statistically important variables. The resulting algorithm is called STATS-MADS and is tested on bound constrained test problems having up to 500 variables. The numerical results show a significant improvement in the objective function value after a fixed budget of function evaluations.
引用
收藏
页码:1599 / 1610
页数:12
相关论文
共 50 条
  • [1] A variance-based method to rank input variables of the Mesh Adaptive Direct Search algorithm
    Luc Adjengue
    Charles Audet
    Imen Ben Yahia
    Optimization Letters, 2014, 8 : 1599 - 1610
  • [2] THE MESH ADAPTIVE DIRECT SEARCH ALGORITHM FOR PERIODIC VARIABLES
    Audet, Charles
    Le Digabel, Sebastien
    PACIFIC JOURNAL OF OPTIMIZATION, 2012, 8 (01): : 103 - 119
  • [3] THE MESH ADAPTIVE DIRECT SEARCH ALGORITHM FOR GRANULAR AND DISCRETE VARIABLES
    Audet, Charles
    Le Digabel, Sebastien
    Tribes, Christophe
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1164 - 1189
  • [4] Variance-based sensitivity analysis with the uncertainties of the input variables and their distribution parameters
    Wang, Pan
    Lu, Zhenzhou
    Xiao, Sinan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (04) : 1103 - 1125
  • [5] A mesh adaptive direct search algorithm for multiobjective optimization
    Audet, Charles
    Savard, Gilles
    Zghal, Walid
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 204 (03) : 545 - 556
  • [6] CONSTRAINT SCALING IN THE MESH ADAPTIVE DIRECT SEARCH ALGORITHM
    Audet, Charles
    Caporossi, Gilles
    Jacquet, Stephane
    PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (04): : 595 - 610
  • [7] Gene Expression Data Clustering Using Variance-based Harmony Search Algorithm
    Kumar, Vijay
    Kumar, Dinesh
    IETE JOURNAL OF RESEARCH, 2019, 65 (05) : 641 - 652
  • [8] PARALLEL SPACE DECOMPOSITION OF THE MESH ADAPTIVE DIRECT SEARCH ALGORITHM
    Audet, Charles
    Dennis, J. E., Jr.
    Le Digabel, Sebastien
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (03) : 1150 - 1170
  • [9] Variance-Based Harmony Search Algorithm for Unimodal and Multimodal Optimization Problems with Application to Clustering
    Kumar, Vijay
    Chhabra, Jitender Kumar
    Kumar, Dinesh
    CYBERNETICS AND SYSTEMS, 2014, 45 (06) : 486 - 511
  • [10] Dynamic scaling in the mesh adaptive direct search algorithm for blackbox optimization
    Charles Audet
    Sébastien Le Digabel
    Christophe Tribes
    Optimization and Engineering, 2016, 17 : 333 - 358