Using artificial neural networks to classify the activity of capsaicin and its analogues

被引:20
|
作者
Hosseini, M
Maddalena, DJ
Spence, I
机构
[1] Department of Pharmacology, University of Sydney, Sydney
关键词
D O I
10.1021/ci9700384
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Back-propagation artificial neural networks (ANNs) were trained with parameters derived from different molecular structure representation methods, including topological indices, molecular connectivity, and novel physicochemical descriptors to model the structure-activity relationship of a large series of capsaicin analogues. The ANN QSAR model produced a high level of correlation between the experimental and predicted data. After optimization, using cross-validation and selective pruning techniques, the ANNs predicted the EC50 values of 101 capsaicin analogues, correctly classifying 34 of 41 inactive compounds and 58 of 60 active compounds. These results demonstrate the capability of ANNs for predicting the biological activity of drugs, when trained on an optimal set of input parameters derived from a combination of different molecular structure representations.
引用
收藏
页码:1129 / 1137
页数:9
相关论文
共 50 条
  • [1] Artificial Neural Networks that Classify Musical Chords
    Yaremchuk, Vanessa
    Dawson, Michael R. W.
    [J]. INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2008, 2 (03) : 22 - 30
  • [2] Selection index as a priori information for using artificial neural networks to classify alfalfa genotypes
    Santos, I. G.
    Cruz, C. D.
    Nascimento, M.
    Ferreira, R. P.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2019, 18 (02)
  • [3] Utilization of Artificial Neural Networks to classify sunflower seed damage
    Magalhaes Junior, Antonio M.
    Santos, Paula R.
    Safadi, Thelma
    [J]. SIGMAE, 2019, 8 (02): : 569 - 575
  • [4] Artificial neural networks can classify uninvestigated patients with dyspepsia
    Andriulli, Angelo
    Grossi, Enzo
    Buscema, Massimo
    Pilotto, Alberto
    Festa, Virginia
    Perri, Francesco
    [J]. EUROPEAN JOURNAL OF GASTROENTEROLOGY & HEPATOLOGY, 2007, 19 (12) : 1055 - 1058
  • [5] Artificial neural networks classify cotton genotypes for fiber length
    de Carvalho, Luiz Paulo
    Teodoro, Paulo Eduardo
    Azevedo Barroso, Lais Mayara
    Correia Farias, Francisco Jose
    Morello, Camilo de Lellis
    Nascimento, Moyses
    [J]. CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2018, 18 (02): : 200 - 204
  • [6] Detection of epileptiform activity using artificial neural networks
    Lesser, RP
    Webber, WRS
    [J]. NEOCORTICAL EPILEPSIES, 2000, 84 : 307 - 315
  • [7] Convective activity forecasts using artificial neural networks
    Lewen, GD
    [J]. FIRST CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1998, : 110 - 117
  • [8] Detection of interplanetary activity using artificial neural networks
    Gothoskar, P
    Khobragade, S
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1995, 277 (04) : 1274 - 1278
  • [9] USING NEURAL NETWORKS TO CLASSIFY ASTEROID SPECTRA
    HOWELL, ES
    MERENYI, E
    LEBOFSKY, LA
    [J]. METEORITICS, 1991, 26 (04): : 347 - 347
  • [10] Using neural networks to classify Internet users
    Nogueira, A
    de Oliveira, MR
    Salvador, P
    Valadas, R
    Pacheco, A
    [J]. TELECOMMUNICATIONS 2005, PROCEEDINGS, 2005, : 183 - 188