Weak KAMtheorem for Hamilton-Jacobi equations with Neumann boundary conditions on noncompact manifolds

被引:0
|
作者
Kong, Yuedong [1 ]
Xu, Junxiang [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi equation; weak KAM theory; noncompact manifold; Neumann boundary condition; PARTIAL-DIFFERENTIAL-EQUATIONS; DEFINITE LAGRANGIAN SYSTEMS; VISCOSITY SOLUTIONS; KAM THEORY; CONVERGENCE;
D O I
10.1002/mma.3273
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider Hamilton-Jacobi equations with homogeneous Neumann boundary condition. We establish some results on noncompact manifold with homogeneous Neumann boundary conditions in view of weak Kolmogorov-Arnold-Moser (KAM) theory, which is a generalization of the results obtained by Fathi under the non-bounded condition. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:2974 / 2983
页数:10
相关论文
共 50 条