Salient object detection via compactness and objectness cues

被引:20
|
作者
Zhang, Qing [1 ]
Lin, Jiajun [2 ]
Li, Wenju [1 ]
Shi, Yanjiao [1 ]
Cao, Guogang [1 ]
机构
[1] Shanghai Inst Technol, Sch Comp Sci & Informat Engn, Shanghai 201418, Peoples R China
[2] East China Univ Sci & Technol, Shanghai 200237, Peoples R China
来源
VISUAL COMPUTER | 2018年 / 34卷 / 04期
基金
中国国家自然科学基金;
关键词
Saliency detection; Objectness prior; Background prior; Color spatial distribution; Manifold ranking; REGION DETECTION; IMAGE; MODEL;
D O I
10.1007/s00371-017-1354-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Existing saliency detection algorithms are mainly patch-based. In this paper, we propose a simple but effective approach to detect salient objects by exploring both patch-level and object-level cues. First, we obtain the objectness saliency map with objectness algorithm to find potential object candidates without need of category information. Second, the compactness map is generated by measuring color spatial distribution, and then it is refined by eliminating regions connecting to the selected boundary. Finally, to enforce the consistency among salient regions, we adopt graph-based manifold ranking algorithm by constructing two graphs each using a regional property descriptor. Both qualitative and quantitative evaluations on four publicly available datasets demonstrate the robustness and efficiency of our proposed approach against 23 state-of-the-art methods in terms of six performance criterions.
引用
收藏
页码:473 / 489
页数:17
相关论文
共 50 条
  • [1] Salient object detection via compactness and objectness cues
    Qing Zhang
    Jiajun Lin
    Wenju Li
    Yanjiao Shi
    Guogang Cao
    [J]. The Visual Computer, 2018, 34 : 473 - 489
  • [2] SALIENT OBJECT DETECTION VIA OBJECTNESS MEASURE
    Srivatsa, Sai R.
    Babu, R. Venkatesh
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4481 - 4485
  • [3] Salient Object Detection via Objectness Proposals
    Nguyen, Tam V.
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 4286 - 4287
  • [4] Objectness to assist salient object detection
    Sun, Xiaoliang
    Su, Ang
    Chen, Shengyi
    Yu, Qifeng
    Liu, Xiaolin
    [J]. IET IMAGE PROCESSING, 2016, 10 (05) : 391 - 397
  • [5] Salient Object Detection Based on Objectness
    Wang, Baoyan
    Zhang, Tie
    Wang, Xingang
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2015, : 293 - 297
  • [6] Spatiotemporal salient object detection by integrating with objectness
    Tongbao Wu
    Zhi Liu
    Xiaofei Zhou
    Kai Li
    [J]. Multimedia Tools and Applications, 2018, 77 : 19481 - 19498
  • [7] Spatiotemporal salient object detection by integrating with objectness
    Wu, Tongbao
    Liu, Zhi
    Zhou, Xiaofei
    Li, Kai
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (15) : 19481 - 19498
  • [8] Graph model-based salient object detection using objectness and multiple saliency cues
    Ji, Yuzhu
    Zhang, Haijun
    Tseng, Kuo-Kun
    Chow, Tommy W. S.
    Wu, Q. M. Jonathan
    [J]. NEUROCOMPUTING, 2019, 323 : 188 - 202
  • [9] Salient object detection via global and local cues
    Tong, Na
    Lu, Huchuan
    Zhang, Ying
    Ruan, Xiang
    [J]. PATTERN RECOGNITION, 2015, 48 (10) : 3258 - 3267
  • [10] Salient object detection via color and texture cues
    Zhang, Qing
    Lin, Jiajun
    Tao, Yanyun
    Li, Wenju
    Shi, Yanjiao
    [J]. NEUROCOMPUTING, 2017, 243 : 35 - 48