Development of high vorticity in incompressible 3D Euler equations: Influence of initial conditions

被引:7
|
作者
Agafontsev, D. S. [1 ,2 ]
Kuznetsov, E. A. [2 ,3 ]
Mailybaev, A. A. [4 ]
机构
[1] Russian Acad Sci, Shirshov Inst Oceanol, Moscow 117218, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
[4] Inst Nacl Matemat Pura & Aplicada IMPA, BR-22460320 Rio De Janeiro, Brazil
基金
俄罗斯科学基金会;
关键词
D O I
10.1134/S002136401622001X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The incompressible three-dimensional ideal flows develop very thin pancake-like regions of increasing vorticity. These regions evolve with the scaling omega(max)(t) ae l(t)(-2/3) between the vorticity maximum and pancake thickness, and provide the leading contribution to the energy spectrum, where the gradual formation of the Kolmogorov interval E (k) ae k(-5/3) is observed for some initial flows. With the massive numerical simulations, we study the influence of initial conditions on the processes of pancake formation and the Kolmogorov energy spectrum development.
引用
收藏
页码:685 / 689
页数:5
相关论文
共 50 条
  • [1] Development of high vorticity in incompressible 3D Euler equations: Influence of initial conditions
    D. S. Agafontsev
    E. A. Kuznetsov
    A. A. Mailybaev
    [J]. JETP Letters, 2016, 104 : 685 - 689
  • [2] Development of high vorticity structures in incompressible 3D Euler equations
    Agafontsev, D. S.
    Kuznetsov, E. A.
    Mailybaev, A. A.
    [J]. PHYSICS OF FLUIDS, 2015, 27 (08)
  • [3] DYNAMIC GROWTH ESTIMATES OF MAXIMUM VORTICITY FOR 3D INCOMPRESSIBLE EULER EQUATIONS AND THE SQG MODEL
    Hou, Thomas Y.
    Shi, Zuoqiang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (05): : 1449 - 1463
  • [4] Stretching and compression of vorticity in the 3D Euler equations
    Gibbon, JD
    Galanti, B
    Kerr, RM
    [J]. TURBULENCE STRUCTURE AND VORTEX DYNAMICS, 2001, : 23 - 34
  • [5] On the lagrangian dynamics for the 3D incompressible Euler equations
    Chae, Dongho
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (02) : 557 - 569
  • [6] On the Lagrangian Dynamics for the 3D Incompressible Euler Equations
    Dongho Chae
    [J]. Communications in Mathematical Physics, 2007, 269 : 557 - 569
  • [7] Notes on perturbations of the incompressible 3D Euler equations
    Chae, Dongho
    [J]. NONLINEARITY, 2007, 20 (02) : 517 - 522
  • [8] Helical symmetry vortices for 3D incompressible Euler equations
    Cao, Daomin
    Lai, Shanfa
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 360 : 67 - 89
  • [9] A LEVEL SET FORMULATION FOR THE 3D INCOMPRESSIBLE EULER EQUATIONS
    Deng, Jian
    Hou, Thomas Y.
    Yu, Xinwei
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2005, 12 (04) : 427 - 440
  • [10] SINGULAR SOLUTIONS TO THE 3D AXISYMMETRICAL INCOMPRESSIBLE EULER EQUATIONS
    PUMIR, A
    SIGGIA, ED
    [J]. PHYSICA D, 1992, 61 (1-4): : 240 - 245