COMMUTATIVE NILPOTENT CLOSED ALGEBRAS AND WEIL REPRESENTATIONS

被引:1
|
作者
Pallikaros, Christakis A. [1 ]
Ward, Harold N. [2 ]
机构
[1] Univ Cyprus, Dept Math & Stat, Nicosia, Cyprus
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
关键词
Matrix algebra; Multiplicity-free; Unitary group; Weil representation; FINITE CLASSICAL-GROUPS; SYMPLECTIC GROUPS; UNITARY GROUPS; DUAL PAIRS; LOCAL RING; CHARACTERS; FIELDS;
D O I
10.1080/00927872.2014.953634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be the field GF(q(2)) of q(2) elements, q odd, and let V be an F-vector space endowed with a nonsingular Hermitian form phi. Let sigma be the adjoint involutory antiautomorphism of End(F) V associated to the form, and let U(phi) be the corresponding unitary group. We ask whether the restrictions of the Weil representation of U(phi) to certain subgroups are multiplicity-free. These subgroups consist of the members of U(phi) in subalgebras of the form F I + N, where N is a sigma-stable commutative nilpotent subalgebra of End(F) V with the further property that N contains its annihilator. We give a necessary condition for multiplicity-freeness that depends on the dimensions of N and that annihilator. Moreover, the case that N is conjugate to its regular representation is completely settled. Several other classes of subalgebra are discussed in detail.
引用
收藏
页码:4839 / 4859
页数:21
相关论文
共 50 条
  • [1] Commutative nilpotent extensions of commutative C*-algebras split
    Albrecht, E
    Ermert, O
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 601 - 608
  • [2] Degenerations of nilpotent associative commutative algebras
    Kaygorodov, Ivan
    Lopes, Samuel A.
    Popov, Yury
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1632 - 1639
  • [3] THE ALGEBRAIC CLASSIFICATION OF NILPOTENT COMMUTATIVE ALGEBRAS
    Jumaniyozov, Doston
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 3909 - 3993
  • [4] A CLASS OF LOCALLY NILPOTENT COMMUTATIVE ALGEBRAS
    Behn, Antonio
    Elduque, Alberto
    Labra, Alicia
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (05) : 763 - 774
  • [5] Representations of nilpotent Lie algebras
    Farnsteiner, R
    ARCHIV DER MATHEMATIK, 1999, 72 (01) : 28 - 39
  • [6] Representations of nilpotent Lie algebras
    Rolf Farnsteiner
    Archiv der Mathematik, 1999, 72 : 28 - 39
  • [7] The algebraic classification of nilpotent associative commutative algebras
    Kaygorodov, Ivan
    Rakhimov, Isamiddin
    Husain, Sh K. Said
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (11)
  • [8] MAXIMALITY CRITERION FOR NILPOTENT COMMUTATIVE MATRIX ALGEBRAS
    HANDELMA.D
    SELICK, P
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (01): : 125 - 126
  • [9] On the existence of elements of non-nilpotent finite closed descent in commutative radical Frechet algebras
    Kopp, MK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 261 - 272
  • [10] REPRESENTATIONS OF NILPOTENT LIE-ALGEBRAS
    TAUVEL, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (15): : 977 - 979