Inverse technique identification of material parameters using finite element and neural network computation

被引:30
|
作者
Chamekh, A. [2 ]
Salah, H. Bel Hadj [2 ]
Hambli, R. [1 ]
机构
[1] Polytech Orleans LMSP Prisme, F-45072 Orleans 2, France
[2] ENIM LGM, Monastir 5019, Tunisia
关键词
Finite element; Neural networks; Deep drawing; Anisotropy; Inverse technique; PREDICTION;
D O I
10.1007/s00170-008-1809-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Experimental identification of anisotropic behavior law is currently obtained by performing several complicated tests and a long duration of experiments. This paper describes a new technique allowing for the identification of HILL anisotropic parameters by inverse technique method based on deep drawing of a cylindrical cup. The identification approach is based on the artificial neural network (ANN) computation trained from finite element simulation. The results obtained by ANN models and by the finite element method shows a good agreement.
引用
收藏
页码:173 / 179
页数:7
相关论文
共 50 条
  • [1] Inverse technique identification of material parameters using finite element and neural network computation
    A. Chamekh
    H. Bel Hadj Salah
    R. Hambli
    [J]. The International Journal of Advanced Manufacturing Technology, 2009, 44 : 173 - 179
  • [2] Identification of material parameters through inverse finite element modelling
    Evans, Sam
    Avril, Stephane
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2012, 15 (01) : 1 - 2
  • [3] An inverse analysis using a finite element model for identification of rheological parameters
    Gavrus, A
    Massoni, E
    Chenot, JL
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1996, 60 (1-4) : 447 - 454
  • [4] Identification of material parameters at high strain rates using ballistic impact tests and inverse finite element analysis
    Levadnyi, Ievgen
    Liu, Fujia
    Gu, Yaodong
    [J]. AIP ADVANCES, 2024, 14 (04)
  • [5] Identification of material parameters using finite element and micro genetic algorithm
    Gao, Hui
    Han, Lifen
    Li, Guangyao
    Han, Xu
    [J]. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2005, 16 (18): : 1678 - 1681
  • [6] Application of RBF neural network and finite element analysis to solve the inverse problem of defect identification
    Hacib, T.
    Mekideche, M. R.
    Ferkha, N.
    [J]. INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2007, 2 (01): : 110 - 117
  • [7] A Projected Finite Element Update Method for Inverse Identification of Material Constitutive Parameters in transversely Isotropic Laminates
    M.Z. Siddiqui
    S. Z. Khan
    M. A. Khan
    M. Shahzad
    K. A. Khan
    S. Nisar
    D. Noman
    [J]. Experimental Mechanics, 2017, 57 : 755 - 772
  • [8] A Projected Finite Element Update Method for Inverse Identification of Material Constitutive Parameters in transversely Isotropic Laminates
    Siddiqui, M. Z.
    Khan, S. Z.
    Khan, M. A.
    Shahzad, M.
    Khan, K. A.
    Nisar, S.
    Noman, D.
    [J]. EXPERIMENTAL MECHANICS, 2017, 57 (05) : 755 - 772
  • [9] Identification of Material Parameters of Two-Dimensional Anisotropic Bodies Using an Inverse Multi-Loading Boundary Element Technique
    Hematiyan, M. R.
    Khosravifard, A.
    Shiah, Y. C.
    Tan, C. L.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2012, 87 (01): : 55 - 76
  • [10] Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation
    Hambli, Ridha
    Katerchi, Houda
    Benhamou, Claude-Laurent
    [J]. BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2011, 10 (01) : 133 - 145