On the stability of canonical forms of singular linear difference systems

被引:0
|
作者
Chen, GT [1 ]
Fahim, A
机构
[1] Univ Lille 1, CNRS, URA 751, F-59655 Villeneuve Dascq, France
[2] Univ La Rochelle, F-17042 La Rochelle, France
关键词
D O I
10.2140/pjm.2000.192.239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the formal reduction by a method of deformation of orbits under the adjoint representation of GL(n, C), we have proved the existence and uniqueness (up to equivalence under GL(n, C)) of a formal canonical form of systems of singular linear difference equations. In this paper we study the stability of the irregular part of the canonical form under perturbation of the matrix coefficients.
引用
收藏
页码:239 / 256
页数:18
相关论文
共 50 条
  • [1] FEEDBACK CANONICAL-FORMS OF SINGULAR SYSTEMS
    LOISEAU, JJ
    OZCALDIRAN, K
    MALABRE, M
    KARCANIAS, N
    KYBERNETIKA, 1991, 27 (04) : 289 - 305
  • [2] Unimodular Transformations and Canonical Forms for Singular Systems
    Vafiadis, Dimitris
    Karcanias, Nicos
    IFAC PAPERSONLINE, 2017, 50 (01): : 10816 - 10821
  • [3] CANONICAL FORMS FOR LINEAR MULTIVARIABLE SYSTEMS
    LUENBERGER, DG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (03) : 290 - +
  • [4] Holomorphic canonical forms for holomorphic families of singular systems
    Garcia-Planas, M. Isabel
    COMPUTATIONAL METHODS AND APPLIED COMPUTING, 2008, : 24 - +
  • [5] Holomorphic canonical forms for holomorphic families of singular systems
    Garcia-Planas, M. Isabel
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEMS THEORY AND SCIENTIFIC COMPUTATION (ISTAC'08): NEW ASPECTS OF SYSTEMS THEORY AND SCIENTIFIC COMPUTATION, 2008, : 37 - +
  • [6] Random vibration of linear systems with singular matrices based on Kronecker canonical forms of matrix pencils
    Karageorgos, A. D.
    Moysis, L.
    Fragkoulis, V. C.
    Kougioumtzoglou, I. A.
    Pantelous, A. A.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 161
  • [7] On stability and Bohl exponent of linear singular systems of difference equations with variable coefficients
    Du, N. H.
    Linh, V. H.
    Nga, N. T. T.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (09) : 1350 - 1377
  • [8] ON CANONICAL-FORMS FOR LINEAR CONSTANT SYSTEMS
    ANTOULAS, AC
    INTERNATIONAL JOURNAL OF CONTROL, 1981, 33 (01) : 95 - 122
  • [9] CANONICAL-FORMS FOR LINEAR-SYSTEMS
    PRATZELWOLTERS, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 50 (APR) : 437 - 473
  • [10] Canonical Forms and Orbit Spaces of Linear Systems
    Helmke, U.
    Hinrichsen, D.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1986, 3 (2-3) : 167 - 184