Schreier split epimorphisms between monoids

被引:21
|
作者
Bourn, Dominique [1 ]
Martins-Ferreira, Nelson [2 ]
Montoli, Andrea [3 ]
Sobral, Manuela [3 ,4 ]
机构
[1] Univ Littoral Cote dOpale, Lab Math Pures & Appl, Calais, France
[2] Inst Politecn Leiria, ESTG, CDRSP, Leiria, Portugal
[3] Univ Coimbra, CMUC, P-3001454 Coimbra, Portugal
[4] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
关键词
Schreier split epimorphisms; Monoids; Split short five lemma; Internal relations;
D O I
10.1007/s00233-014-9571-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore some properties of Schreier split epimorphisms between monoids, which correspond to monoid actions. In particular, we prove that the split short five lemma holds for monoids, when it is restricted to Schreier split epimorphisms, and that any Schreier reflexive relation is transitive, partially recovering in monoids a classical property of Mal'tsev varieties.
引用
收藏
页码:739 / 752
页数:14
相关论文
共 50 条
  • [1] Schreier split epimorphisms between monoids
    Dominique Bourn
    Nelson Martins-Ferreira
    Andrea Montoli
    Manuela Sobral
    Semigroup Forum, 2014, 88 : 739 - 752
  • [2] Schreier split extensions of preordered monoids
    Martins-Ferreira, Nelson
    Sobral, Manuela
    JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING, 2021, 120
  • [3] REPRESENTABLE EPIMORPHISMS OF MONOIDS
    GOULD, M
    COMPOSITIO MATHEMATICA, 1974, 29 (03) : 213 - 222
  • [4] EPIMORPHISMS OF FREE MONOIDS
    PRATHER, RE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) : 201 - 205
  • [5] Almost Schreier monoids
    Dumitrescu, Tiberiu
    Khalid, Waseem
    ALGEBRA UNIVERSALIS, 2012, 67 (01) : 19 - 28
  • [6] Almost Schreier monoids
    Tiberiu Dumitrescu
    Waseem Khalid
    Algebra universalis, 2012, 67 : 19 - 28
  • [7] Semilinear De Morgan monoids and epimorphisms
    Wannenburg, J. J.
    Raftery, J. G.
    ALGEBRA UNIVERSALIS, 2024, 85 (01)
  • [8] On lax epimorphisms of partially ordered monoids
    Sohail, N.
    Shah, A. H.
    Ahangar, S. A.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2023, 33 (05) : 953 - 967
  • [9] Semilinear De Morgan monoids and epimorphisms
    J. J. Wannenburg
    J. G. Raftery
    Algebra universalis, 2024, 85
  • [10] A characterization of weakly Schreier extensions of monoids
    Faul, Peter F.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (02)