The non-differentiability of a class of fractal interpolation functions

被引:12
|
作者
Chen, SR [1 ]
机构
[1] Wuhan Univ, Dept Phys, Wuhan 430072, Peoples R China
关键词
fractal interpolation; iterated system; nowhere differentiablity; Hausdorff metric;
D O I
10.1016/S0252-9602(17)30526-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hardin and Massopust([1]) introduced a class of fractal interpolation functions and calculated their Bouligand dimensions. This paper deals with the non-differentiability of these functions and shows some conditions under which they are nowhere differentiable. The basic technique here is based on the presentation the author obtains.
引用
收藏
页码:425 / 430
页数:6
相关论文
共 50 条
  • [1] THE NON-DIFFERENTIABILITY OF A CLASS OFFRACTAL INTERPOLATION FUNCTIONS
    陈世荣
    [J]. Acta Mathematica Scientia, 1999, (04) : 425 - 430
  • [2] Points of non-differentiability of convex functions
    Siksek, S
    El Sedy, E
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (03) : 725 - 728
  • [3] Non-differentiability points of Cantor functions
    Li, Wenxia
    [J]. MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) : 140 - 151
  • [4] NON-DIFFERENTIABILITY OF THE CONVOLUTION OF DIFFERENTIABLE REAL FUNCTIONS
    Ciesielski, Krzysztof C.
    Jimenez-Rodriguez, Pablo
    Munoz-Fernandez, Gustavo A.
    Seoane-Sepulveda, Juan B.
    [J]. REAL ANALYSIS EXCHANGE, 2020, 45 (02) : 327 - 338
  • [5] ON SETS OF NON-DIFFERENTIABILITY OF LIPSCHITZ AND CONVEX FUNCTIONS
    Zajicek, Ludek
    [J]. MATHEMATICA BOHEMICA, 2007, 132 (01): : 75 - 85
  • [6] Non-differentiability and fractional differentiability on timescales
    Nategh M.
    Neamaty A.
    Agheli B.
    [J]. Arabian Journal of Mathematics, 2018, 7 (2) : 147 - 158
  • [7] Dimensions of non-differentiability points of Cantor functions
    Yao, Yuanyuan
    Zhang, Yunxiu
    Li, Wenxia
    [J]. STUDIA MATHEMATICA, 2009, 195 (02) : 113 - 125
  • [8] Cone unrectifiable sets and non-differentiability of Lipschitz functions
    Olga Maleva
    David Preiss
    [J]. Israel Journal of Mathematics, 2019, 232 : 75 - 108
  • [9] Cone unrectifiable sets and non-differentiability of Lipschitz functions
    Maleva, Olga
    Preiss, David
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2019, 232 (01) : 75 - 108
  • [10] Non-differentiability Sets for Cantor Functions with respect to Various Expansions
    Ikeda, K.
    [J]. AZERBAIJAN JOURNAL OF MATHEMATICS, 2016, 6 (01): : 52 - 78