Vertical charge-carrier transport in Si nanocrystal/SiO2 multilayer structures

被引:28
|
作者
Osinniy, V. [1 ]
Lysgaard, S.
Kolkovsky, Vl
Pankratov, V.
Larsen, A. Nylandsted
机构
[1] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
关键词
OPTICAL GAIN; SILICON; PHOTOLUMINESCENCE; TEMPERATURE; ELECTRONS; VOLTAGE; DOTS;
D O I
10.1088/0957-4484/20/19/195201
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Charge-carrier transport in multilayer structures of Si nanocrystals (NCs) embedded in a SiO2 matrix grown by magnetron sputtering has been investigated. The presence of two types of Si NCs with different diameters after post-growth annealing is concluded from transmission-electron microscopy and photoluminescence measurements. Based on the electric field and temperature dependences of capacitance and resistivity, it is established that the carrier transport is best described by a combination of phonon-assisted and direct tunneling mechanisms. Poole-Frenkel tunneling seems to be a less suitable mechanism to explain the vertical carrier transport due to the very high values of refractive indices obtained within this model. The possibility to more effectively collect charge carriers generated by light in structures having Si NCs of different size is discussed.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Size effects on the luminescence spectrum in amorphous Si/SiO2 multilayer structures
    Kanemitsu, Y
    Kushida, T
    APPLIED PHYSICS LETTERS, 2000, 77 (22) : 3550 - 3552
  • [32] Charge photo-carrier transport from silicon nanocrystals embedded in SiO2-based multilayer structures
    Rezgui, B. Dridi
    Gourbilleau, F.
    Maestre, D.
    Palais, O.
    Sibai, A.
    Lemiti, M.
    Bremond, G.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (02)
  • [33] SI/SIO2 INTERFACE STRUCTURES IN LASER-RECRYSTALLIZED SI ON SIO2
    OGURA, A
    AIZAKI, N
    APPLIED PHYSICS LETTERS, 1989, 55 (06) : 547 - 549
  • [34] Charge Transport in Si-SiO2 and Si-TiO2 Nanocomposite Structures
    Milovanov, Yu S.
    Kuznetsov, G. V.
    Skryshevsky, V. A.
    Stupan, S. M.
    SEMICONDUCTORS, 2014, 48 (10) : 1335 - 1341
  • [35] Charge transport in Si-SiO2 and Si-TiO2 nanocomposite structures
    Yu. S. Milovanov
    G. V. Kuznetsov
    V. A. Skryshevsky
    S. M. Stupan
    Semiconductors, 2014, 48 : 1335 - 1341
  • [36] Elucidating the Role of Ligand Engineering on Local and Macroscopic Charge-Carrier Transport in NaBiS2 Nanocrystal Thin Films
    Huang, Yi-Teng
    Schleuning, Markus
    Hempel, Hannes
    Zhang, Youcheng
    Rusu, Marin
    Unold, Thomas
    Musiienko, Artem
    Karalis, Orestis
    Jung, Nora
    Zelewski, Szymon J.
    Britton, Andrew J.
    Ngoh, Natalie
    Song, Weixin
    Hirst, Louise C.
    Sirringhaus, Henning
    Stranks, Samuel D.
    Rao, Akshay
    Levine, Igal
    Hoye, Robert L. Z.
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (29)
  • [37] Charge-carrier transport in smectic mesophases of biphenyls
    Ohno, Akira
    Haruyama, Akihide
    Kurotaki, Kensuke
    Hanna, Jun-ichi
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (08)
  • [38] Charge-carrier transport and recombination in heteroepitaxial CdTe
    Kuciauskas, Darius
    Farrell, Stuart
    Dippo, Pat
    Moseley, John
    Moutinho, Helio
    Li, Jian V.
    Motz, A. M. Allende
    Kanevce, Ana
    Zaunbrecher, Katherine
    Gessert, Timothy A.
    Levi, Dean H.
    Metzger, Wyatt K.
    Colegrove, Eric
    Sivananthan, S.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (12)
  • [39] Charge-carrier transport in smectic mesophases of biphenyls
    Ohno, Akira
    Haruyama, Akihide
    Kurotaki, Kensuke
    Hanna, Jun-Ichi
    Journal of Applied Physics, 2007, 102 (08):
  • [40] Charge-carrier transport in disordered organic solids
    Baranovskii, SD
    Cordes, H
    Hensel, F
    Leising, G
    PHYSICAL REVIEW B, 2000, 62 (12) : 7934 - 7938