Effects of surface area on electrochemical performance of Li[Ni0.2Li0.2Mn0.6]O2 cathode material

被引:26
|
作者
Ryu, Jea Hyeok [2 ]
Park, Bo Gun [2 ]
Kim, Seuk Buom [2 ]
Park, Yong Joon [1 ,2 ]
机构
[1] Kyonggi Univ, Div Adv Ind Engn, Suwon 443760, Gyeonggi Do, South Korea
[2] Kyonggi Univ, Dept Adv Mat Engn, Suwon 443760, Gyeonggi Do, South Korea
关键词
Chemical synthesis; Electrochemical measurement; Electrochemical properties; Lithium battery; Cathode; Surface area; LITHIUM-ION BATTERIES; LIFEPO4; CAPACITY; CELLS; LICOO2;
D O I
10.1007/s10800-008-9757-2
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The effect of surface area on the electrochemical properties and thermal stability of Li[Ni0.2Li0.2Mn0.6]O-2 powders was characterized using a charge/discharge cycler and DSC ( Differential Scanning Calorimeter). The surface area of the samples was successfully controlled from similar to 4.0 to similar to 11.7 m(2) g(-1) by changing the molar ratio of the nitrate/acetate sources and adding an organic solvent such as acetic acid or glucose. The discharge capacity and rate capability was almost linearly increased with increase in surface area of the sample powder. A sample with a large surface area of 9.6-11.7 m(2) g(-1) delivered a high discharge capacity of similar to 250 mAh g(-1) at a 0.2 C rate and maintained 62-63% of its capacity at a 6 C rate versus a 0.2 C rate. According to the DSC analysis, heat generation by thermal reaction between the charged electrode and electrolyte was not critically dependent on the surface area. Instead, it was closely related to the type of organic solvent employed in the fabrication process of the powder.
引用
收藏
页码:1059 / 1066
页数:8
相关论文
共 50 条
  • [1] Effects of surface area on electrochemical performance of Li[Ni0.2Li0.2Mn0.6]O2 cathode material
    Jea Hyeok Ryu
    Bo Gun Park
    Seuk Buom Kim
    Yong Joon Park
    Journal of Applied Electrochemistry, 2009, 39 : 1059 - 1066
  • [2] Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries
    Wu, Feng
    Lu, Huaquan
    Su, Yuefeng
    Li, Ning
    Bao, Liying
    Chen, Shi
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2010, 40 (04) : 783 - 789
  • [3] Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries
    Feng Wu
    Huaquan Lu
    Yuefeng Su
    Ning Li
    Liying Bao
    Shi Chen
    Journal of Applied Electrochemistry, 2010, 40 : 783 - 789
  • [4] Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li0.2Ni0.2Mn0.6]O2
    Zheng, Jianming
    Shi, Wei
    Gu, Meng
    Xiao, Jie
    Zuo, Pengjian
    Wang, Chongmin
    Zhang, Ji-Guang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) : A2212 - A2219
  • [5] Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2
    Armstrong, A. Robert
    Holzapfel, Michael
    Novak, Petr
    Johnson, Christopher S.
    Kang, Sun-Ho
    Thackeray, Michael M.
    Bruce, Peter G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) : 8694 - 8698
  • [6] Synthesis of Li[Ni0.2Li0.2Mn0.6]O2 nano-particles and their surface modification using a polydopamine layer
    Lee, Hye Jin
    Park, Yong Joon
    JOURNAL OF POWER SOURCES, 2013, 244 : 222 - 233
  • [7] A Li-rich Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material in situ Coated with Polyaniline
    Sun, Lingna
    Yi, Xianwen
    Shi, Chuan
    Ren, Xiangzhong
    Gao, Yuan
    Li, Yongliang
    Zhang, Peixin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (06): : 4756 - 4767
  • [8] Effects of raw materials on the electrochemical performance of Na-doped Li-rich cathode materials Li[Li0.2Ni0.2Mn0.6]O2
    Liu, Hongzhao
    Tao, Lei
    Wang, Wei
    Zhang, Bo
    Su, Mingru
    IONICS, 2019, 25 (03) : 959 - 968
  • [9] Effects of raw materials on the electrochemical performance of Na-doped Li-rich cathode materials Li[Li0.2Ni0.2Mn0.6]O2
    Hongzhao Liu
    Lei Tao
    Wei Wang
    Bo Zhang
    Mingru Su
    Ionics, 2019, 25 : 959 - 968
  • [10] Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material
    Wang, Dan
    Huang, Yan
    Huo, Zhenqing
    Chen, Li
    ELECTROCHIMICA ACTA, 2013, 107 : 461 - 466