Temperature Dependence of "Elementary Processes" in Doping Semiconductor Nanocrystals

被引:180
|
作者
Chen, Dingan [1 ,2 ]
Viswanatha, Ranjani [1 ]
Ong, Grace L. [1 ]
Xie, Renguo [1 ]
Balasubramaninan, Mahalingam [3 ]
Peng, Xiaogang [1 ]
机构
[1] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA
[2] Southeast Univ, Sch Elect Sci & Engn, Adv Photon Ctr, Nanjing 210096, Peoples R China
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
CDS/ZNS CORE/SHELL NANOCRYSTALS; CDSE NANOCRYSTALS; QUANTUM DOTS; DOPED NANOCRYSTALS; OPTICAL-PROPERTIES; ZNSE NANOCRYSTALS; MN; EMITTERS; NANOWIRES; EFFICIENT;
D O I
10.1021/ja9018644
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlled doping is a critical step toward various unique nanostructures. This report shall demonstrate that doping chemistry of colloidal nanocrystals is much more complex than what has been proposed in the existing experimental and theoretical reports. Four individual processes, namely "surface adsorption", "lattice incorporation", "lattice diffusion", and "lattice ejection", will be identified, each of which possesses its own critical temperature. A given type of host nanocrystals can be switched from being impossible to dope to becoming successfully doped. The key is to program the reaction temperature to accommodate all elementary processes.
引用
收藏
页码:9333 / 9339
页数:7
相关论文
共 50 条
  • [1] Temperature dependence of elementary processes in doping semiconductor nanocrystals
    Chen, Dingan
    Viswanatha, Ranjani
    Ong, Grace L.
    Xie, Renguo
    Balasubramaninan, Mahalingam
    Peng, Xiaogang
    [J]. Journal of the American Chemical Society, 2009, 131 (26): : 9333 - 9339
  • [2] Doping semiconductor nanocrystals
    Steven C. Erwin
    Lijun Zu
    Michael I. Haftel
    Alexander L. Efros
    Thomas A. Kennedy
    David J. Norris
    [J]. Nature, 2005, 436 : 91 - 94
  • [3] Doping semiconductor nanocrystals
    Erwin, SC
    Zu, LJ
    Haftel, MI
    Efros, AL
    Kennedy, TA
    Norris, DJ
    [J]. NATURE, 2005, 436 (7047) : 91 - 94
  • [4] Doping of preformed semiconductor nanocrystals
    Gamelin, Daniel R.
    Vlaskin, Vladimir A.
    Barrows, Charles J.
    Erickson, Christian S.
    Rinehart, Jeffrey D.
    Schimpf, Alina M.
    Weaver, Amanda L.
    Cohn, Alicia W.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [5] Doping semiconductor nanocrystals NANOTECHNOLOGY
    Telford, Mark
    [J]. MATERIALS TODAY, 2005, 8 (09) : 10 - 10
  • [6] Metal-to-semiconductor transition in nanocrystals: size and temperature dependence
    Mikrajuddin
    Shi, FG
    Nieh, TG
    Okuyama, K
    [J]. MICROELECTRONICS JOURNAL, 2000, 31 (05) : 343 - 351
  • [7] Temperature Dependence of Emission Line Widths from Semiconductor Nanocrystals Reveals Vibronic Contributions to Line Broadening Processes
    Mack, Timothy G.
    Jethi, Lakshay
    Kambhampati, Patanjali
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (51): : 28537 - 28545
  • [8] Doping and charging in colloidal semiconductor nanocrystals
    Shim, M
    Wang, CJ
    Norris, DJ
    Guyot-Sionnest, P
    [J]. MRS BULLETIN, 2001, 26 (12) : 1005 - 1008
  • [9] Doping and Charging in Colloidal Semiconductor Nanocrystals
    Moonsub Shim
    Congjun Wang
    David J. Norris
    Philippe Guyot-Sionnest
    [J]. MRS Bulletin, 2001, 26 : 1005 - 1008
  • [10] Fundamental processes in semiconductor nanocrystals
    Lifshitz, Efrat
    Siebbeles, Laurens D. A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (47) : 25677 - 25678