Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives

被引:518
|
作者
Heymans, Nicole
Podlubny, Igor
机构
[1] Tech Univ Kosice, BERG Fac, Kosice 04200, Slovakia
[2] Univ Libre Bruxelles, B-1050 Brussels, Belgium
关键词
D O I
10.1007/s00397-005-0043-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
On a series of examples from the field of viscoelasticity we demonstrate that it is possible to attribute physical meaning to initial conditions expressed in terms of Riemann-Liouville fractional derivatives, and that it is possible to obtain initial values for such initial conditions by appropriate measurements or observations.
引用
收藏
页码:765 / 771
页数:7
相关论文
共 50 条
  • [1] Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
    Nicole Heymans
    Igor Podlubny
    [J]. Rheologica Acta, 2006, 45 : 765 - 771
  • [2] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    [J]. FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [3] Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives
    Li Kexue
    Peng Jigen
    Jia Junxiong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 476 - 510
  • [4] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [5] An approximate solution method for ordinary fractional differential equations with the Riemann-Liouville fractional derivatives
    Lukashchuk, S. Yu.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (02) : 390 - 400
  • [6] Solvability of BVPs for impulsive fractional differential equations involving the Riemann-Liouville fractional derivatives
    Liu, Yuji
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 79 - 108
  • [7] Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann-Liouville Sense
    Luchko, Yuri
    [J]. MATHEMATICS, 2022, 10 (06)
  • [8] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    [J]. Boundary Value Problems, 2014
  • [9] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    [J]. BOUNDARY VALUE PROBLEMS, 2014,
  • [10] Fractional differential equations of motion in terms of combined Riemann-Liouville derivatives
    Zhang Yi
    [J]. CHINESE PHYSICS B, 2012, 21 (08)