Limits of decoding mental states with fMRI

被引:6
|
作者
Jabakhanji, Rami [1 ,8 ]
Vigotsky, Andrew D. D. [2 ,8 ]
Bielefeld, Jannis [1 ,8 ]
Huang, Lejian [1 ,8 ]
Baliki, Marwan N. N. [3 ,4 ,8 ]
Iannetti, Giandomenico [5 ,6 ]
Apkarian, A. Vania [1 ,3 ,7 ,8 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Neurosci, Chicago, IL USA
[2] Northwestern Univ, Dept Biomed Engn & Stat, Evanston, IL USA
[3] Northwestern Univ, Feinberg Sch Med, Dept Phys Med & Rehabil, Chicago, IL USA
[4] Shirley Ryan AbilityLab, Chicago, IL USA
[5] UCL, Div Biosci, London, England
[6] Italian Inst Technol, Neurosci & Behav Lab, Rome, Italy
[7] Northwestern Univ, Feinberg Sch Med, Dept Anesthesiol, Chicago, IL USA
[8] Northwestern Univ, Ctr Translat Pain Res, Feinberg Sch Med, Chicago, IL USA
基金
美国国家卫生研究院; 美国国家科学基金会; 英国惠康基金;
关键词
Multivoxel pattern analysis; Mental states; Decoding; Cognitive neuroscience; REGULARIZATION PATHS; PAIN PERCEPTION; BRAIN ACTIVITY; REPRESENTATION; PREDICTION; MODEL; MAPS;
D O I
10.1016/j.cortex.2021.12.015
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
A growing number of studies claim to decode mental states using multi-voxel decoders of brain activity. It has been proposed that the fixed, fine-grained, multi-voxel patterns in these decoders are necessary for discriminating between and identifying mental states. Here, we present evidence that the efficacy of these decoders might be overstated. Across various tasks, decoder patterns were spatially imprecise, as decoder performance was unaffected by spatial smoothing; 90% redundant, as selecting a random 10% of a decoder's constituent voxels recovered full decoder performance; and performed similarly to brain activity maps used as decoders. We distinguish decoder performance in discriminating between mental states from performance in identifying a given mental state, and show that even when discrimination performance is adequate, identification can be poor. Finally, we demonstrate that simple and intuitive similarity metrics explain 91% and 62% of discrimination performance within-and across-subjects, respectively. These findings indicate that currently used across-subject decoders of mental states are superfluous and inappropriate for decision-making. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:101 / 122
页数:22
相关论文
共 50 条
  • [1] Decoding brain states from fMRI data
    Janoos, Firdaus
    Machiraju, Raghu
    Morocz, Istvan A.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2010, 77 (03) : 322 - 323
  • [2] Decoding brain states from fMRI connectivity graphs
    Richiardi, Jonas
    Eryilmaz, Hamdi
    Schwartz, Sophie
    Vuilleumier, Patrik
    Van de Ville, Dimitri
    NEUROIMAGE, 2011, 56 (02) : 616 - 626
  • [3] Decoding fMRI brain states in real-time
    LaConte, Stephen M.
    NEUROIMAGE, 2011, 56 (02) : 440 - 454
  • [4] Generalized Sparse Classifiers for Decoding Cognitive States in fMRI
    Ng, Bernard
    Vandat, Arash
    Hamarneh, Ghassan
    Abugharbieh, Rafeef
    MACHINE LEARNING IN MEDICAL IMAGING, 2010, 6357 : 108 - +
  • [5] Fast mental states decoding in mixed reality
    De Massari, Daniele
    Pacheco, Daniel
    Malekshahi, Rahim
    Betella, Alberto
    Verschure, Paul F. M. J.
    Birbaumer, Niels
    Caria, Andrea
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2014, 8
  • [6] Decoding visual brain states from fMRI using an ensemble of classifiers
    Cabral, Carlos
    Silveira, Margarida
    Figueiredo, Patricia
    PATTERN RECOGNITION, 2012, 45 (06) : 2064 - 2074
  • [7] Encoding and decoding in fMRI
    Naselaris, Thomas
    Kay, Kendrick N.
    Nishimoto, Shinji
    Gallant, Jack L.
    NEUROIMAGE, 2011, 56 (02) : 400 - 410
  • [8] Decoding mental states from brain activity in humans
    Haynes, John-Dylan
    Rees, Geraint
    NATURE REVIEWS NEUROSCIENCE, 2006, 7 (07) : 523 - 534
  • [9] Decoding mental states from brain activity in humans
    John-Dylan Haynes
    Geraint Rees
    Nature Reviews Neuroscience, 2006, 7 : 523 - 534
  • [10] Decoding Cognitive States from fMRI Data Using Support Vector Regression
    Di Bono, Maria Grazia
    Zorzi, Marco
    PSYCHNOLOGY JOURNAL, 2008, 6 (02): : 189 - 201