Forced magnetohydrodynamic turbulence in three dimensions using Taylor-Green symmetries

被引:4
|
作者
Krstulovic, G. [1 ]
Brachet, M. E. [2 ,3 ,4 ]
Pouquet, A. [5 ,6 ,7 ]
机构
[1] Univ Nice Sophia Antipolis, UMR7293, Lab Lagrange, Observ Cote Azur,CNRS, F-06304 Nice 4, France
[2] Ecole Normale Super, CNRS, Lab Phys Stat, F-75231 Paris, France
[3] Univ Paris 06, F-75231 Paris, France
[4] Univ Paris 07, F-75231 Paris, France
[5] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA
[6] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[7] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
基金
美国国家科学基金会;
关键词
MHD TURBULENCE; 3-DIMENSIONAL MAGNETOHYDRODYNAMICS; SCALING LAWS; VORTEX;
D O I
10.1103/PhysRevE.89.043017
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine the scaling laws of magnetohydrodynamic (MHD) turbulence for three different types of forcing functions and imposing at all times the fourfold symmetries of the Taylor-Green (TG) vortex generalized to MHD; no uniform magnetic field is present and the magnetic Prandtl number is equal to unity. We also include pumping in the induction equation, and we take the three configurations studied in the decaying case in Lee et al. [Phys. Rev. E 81, 016318 (2010)]. To that effect, we employ direct numerical simulations up to an equivalent resolution of 20483 grid points. We find that, similarly to the case when the forcing is absent, different spectral indices for the total energy spectrum emerge, corresponding to either a Kolmogorov law, an Iroshnikov-Kraichnan law that arises from the interactions of turbulent eddies and Alfven waves, or to weak turbulence when the large-scale magnetic field is strong. We also examine the inertial range dynamics in terms of the ratios of kinetic to magnetic energy, and of the turnover time to the Alfven time, and analyze the temporal variations of these quasiequilibria.
引用
收藏
页数:8
相关论文
共 32 条
  • [1] Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries
    Brachet, M. E.
    Bustamante, M. D.
    Krstulovic, G.
    Mininni, P. D.
    Pouquet, A.
    Rosenberg, D.
    [J]. PHYSICAL REVIEW E, 2013, 87 (01):
  • [2] Dynamo action in a forced Taylor-Green vortex
    Nore, C
    Brachet, ME
    Politano, H
    Pouquet, A
    [J]. DYNAMO AND DYNAMICS, A MATHEMATICAL CHALLENGE, 2001, 26 : 51 - 58
  • [3] THE TAYLOR-GREEN VORTEX AND FULLY-DEVELOPED TURBULENCE
    BRACHET, ME
    MEIRON, D
    ORSZAG, S
    NICKEL, B
    MORF, R
    FRISCH, U
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) : 1049 - 1063
  • [4] Simulation of transition and turbulence decay in the Taylor-Green vortex
    Drikakis, Dimitris
    Fureby, Christer
    Grinstein, Fernando F.
    Youngs, David
    [J]. JOURNAL OF TURBULENCE, 2007, 8 (20): : 1 - 12
  • [5] Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality
    Dallas, V.
    Alexakis, A.
    [J]. PHYSICAL REVIEW E, 2013, 88 (06):
  • [6] Magnetized decaying turbulence in the weakly compressible Taylor-Green vortex
    Glines, Forrest W.
    Grete, Philipp
    O'Shea, Brian W.
    [J]. PHYSICAL REVIEW E, 2021, 103 (04)
  • [7] DIRECT SIMULATION OF 3-DIMENSIONAL TURBULENCE IN THE TAYLOR-GREEN VORTEX
    BRACHET, ME
    [J]. FLUID DYNAMICS RESEARCH, 1991, 8 (1-4) : 1 - 8
  • [8] Origins of the k-2 spectrum in decaying Taylor-Green magnetohydrodynamic turbulent flows
    Dallas, V.
    Alexakis, A.
    [J]. PHYSICAL REVIEW E, 2013, 88 (05)
  • [9] THE TAYLOR-GREEN VORTEX - FULLY-DEVELOPED TURBULENCE AND TRANSITION TO SPATIAL CHAOS
    FRISCH, U
    [J]. LECTURE NOTES IN PHYSICS, 1983, 179 : 257 - 259
  • [10] Vorticity-strain residual-based turbulence modelling of the Taylor-Green vortex
    Bensow, R. E.
    Larson, M. G.
    Vesterlund, P.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (6-8) : 745 - 756