Temporally Adaptive, Partially Unsupervised Classifiers for Remote Sensing Images

被引:0
|
作者
Inamdar, Shilpa [1 ]
Chaudhuri, Subhasis [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remote sensing is being increasingly used over the last few decades as a powerful tool for monitoring, study and analysis of the surface of the earth as well as the atmosphere. In this paper we shall consider temporally adaptive pattern recognition techniques for land-cover classification in multitemporal and multispectral remote sensing images. The technique comprises of pre-processing using global and classwise probability density function (PDF) matching for temporally adapting the statistics before classification. We focus on the utility of these techniques in generating improved partially unsupervised land-cover classifiers and their comparative study.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 50 条
  • [1] Temporally Adaptive, Partially Unsupervised Classifiers for Remote Sensing Images
    Inamdar, Shilpa
    Chaudhuri, Subhasis
    [J]. IETE TECHNICAL REVIEW, 2007, 24 (04) : 249 - 256
  • [2] A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images
    Bruzzone, L
    Prieto, DF
    [J]. PATTERN RECOGNITION LETTERS, 2002, 23 (09) : 1063 - 1071
  • [3] MULTI-CLASSIFIERS CONSISTENCY BASED UNSUPERVISED MANIFOLD ALIGNMENT FOR CLASSIFICATION OF REMOTE SENSING IMAGES
    Wei, Hongkang
    Ma, Li
    Liu, Xiaobo
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1295 - 1298
  • [4] Unsupervised change detection methods for remote sensing images
    Melgani, F
    Moser, G
    Serpico, SB
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VII, 2002, 4541 : 211 - 222
  • [5] Unsupervised segmentation of hyperspectral remote sensing images with superpixels
    Barbato, Mirko Paolo
    Napoletano, Paolo
    Piccoli, Flavio
    Schettini, Raimondo
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2022, 28
  • [6] Ensemble of Adaptive Rule-Based Granular Neural Network Classifiers for Multispectral Remote Sensing Images
    Meher, S. K.
    Kumar, D. Arun
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (05) : 2222 - 2231
  • [7] Unsupervised change detection in multisource and multisensor remote sensing images
    Bruzzone, L
    Prieto, DF
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 2441 - 2443
  • [8] Segmentation of remote sensing images using multistage unsupervised learning
    Sezgin, M
    Ersoy, OK
    Yazgan, B
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XXVII, PTS 1AND 2, 2004, 5558 : 616 - 623
  • [9] Unsupervised-learning airplane detection in remote sensing images
    Zhang, Wenjie
    Lv, Wu
    Zhang, Yifei
    Tian, Jinwen
    Ma, Jie
    [J]. MIPPR 2015: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2015, 9815
  • [10] An Efficient Deep Unsupervised Superresolution Model for Remote Sensing Images
    Sheikholeslami, Mohammad Moein
    Nadi, Saeed
    Naeini, Amin Alizadeh
    Ghamisi, Pedram
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 1937 - 1945