Polarization state-based refractive index sensing with plasmonic nanostructures

被引:25
|
作者
Liu, Shao-Ding [1 ,2 ]
Qi, Xin [1 ,2 ]
Zhai, Wu-Chao [1 ,2 ]
Chen, Zhi-Hui [1 ,2 ]
Wang, Wen-Jie [1 ,2 ]
Han, Jun-Bo [3 ]
机构
[1] Taiyuan Univ Technol, Minist Educ, Key Lab Adv Transducers & Intelligent Control Sys, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Dept Phys & Optoelect, Taiyuan 030024, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
MACH-ZEHNDER INTERFEROMETER; FANO RESONANCES; HIGH-SPEED; SENSITIVITY; NANOPARTICLES; SPECTROSCOPY; FIGURE; ARRAYS; MERIT; METAMATERIALS;
D O I
10.1039/c5nr06336a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spectral-based methods are often used for label-free biosensing. However, practical implementations with plasmonic nanostructures suffer from a broad line width caused by strong radiative and nonradiative losses, and the sensing performance characterized by figure of merit is poor for these spectral-based methods. This study provides a polarization state-based method using plasmonic nanostructures to improve the sensing performance. Instead of the intensity spectrum, the polarization state of the transmitted field is monitored to analyze variations of the surrounding medium. The polarization state of incidence is strongly modified due to the excitation of surface plasmons, and the ellipticity of the transmitted field changes dramatically around plasmon resonances. Sharp resonances with line widths down to subnanometer are achieved by plotting the spectra of the reciprocal of ellipticity. Therefore, the sensing performance can be significantly improved, and a theoretical value of the figure of merit exceeding 1700 is achieved by using the polarization state-based sensing approach.
引用
收藏
页码:20171 / 20179
页数:9
相关论文
共 50 条
  • [1] Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach
    Butet, Jeremy
    Martin, Olivier J. F.
    NANOSCALE, 2014, 6 (24) : 15262 - 15270
  • [2] Long-range refractive index sensing using plasmonic nanostructures
    Rindzevicius, Tomas
    Alaverdyan, Yury
    Kall, Mikael
    Murray, W. Andrew
    Barnes, William L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (32): : 11806 - 11810
  • [3] Refractive Index Sensing with Subradiant Modes: A Framework To Reduce Losses in Plasmonic Nanostructures
    Gallinet, Benjamin
    Martin, Olivier J. F.
    ACS NANO, 2013, 7 (08) : 6978 - 6987
  • [4] Polarization invariant plasmonic nanostructures for sensing applications
    Landobasa Y. M. Tobing
    Geat-Yee Goh
    Aaron D. Mueller
    Lin Ke
    Yu Luo
    Dao-Hua Zhang
    Scientific Reports, 7
  • [5] Polarization invariant plasmonic nanostructures for sensing applications
    Tobing, Landobasa Y. M.
    Goh, Geat-Yee
    Mueller, Aaron D.
    Ke, Lin
    Luo, Yu
    Zhang, Dao-Hua
    SCIENTIFIC REPORTS, 2017, 7
  • [6] Simulation of the refractive index sensitivity of coupled plasmonic nanostructures
    Bonyar, A.
    PROCEEDINGS OF THE 30TH ANNIVERSARY EUROSENSORS CONFERENCE - EUROSENSORS 2016, 2016, 168 : 962 - 965
  • [7] Plasmonic anapole metamaterial for refractive index sensing
    Yao, Jin
    Ou, Jun-Yu
    Savinov, Vassili
    Chen, Mu Ku
    Kuo, Hsin Yu
    Zheludev, Nikolay, I
    Tsai, Din Ping
    PHOTONIX, 2022, 3 (01)
  • [8] Plasmonic crystal enhanced refractive index sensing
    Stein, Benedikt
    Devaux, Eloise
    Genet, Cyriaque
    Ebbesen, Thomas W.
    APPLIED PHYSICS LETTERS, 2014, 104 (25)
  • [9] Plasmonic anapole metamaterial for refractive index sensing
    Jin Yao
    Jun-Yu Ou
    Vassili Savinov
    Mu Ku Chen
    Hsin Yu Kuo
    Nikolay I. Zheludev
    Din Ping Tsai
    PhotoniX, 3
  • [10] Alloy Materials for Plasmonic Refractive Index Sensing
    Nishijima, Yoshiaki
    Hashimoto, Yoshikazu
    Balcytis, Armandas
    Seniutinas, Gediminas
    Juodkazis, Saulius
    SENSORS AND MATERIALS, 2017, 29 (09) : 1233 - 1239