GORENSTEIN PROJECTIVE OBJECTS IN ABELIAN CATEGORIES

被引:0
|
作者
Cheng, H. [1 ]
Zhu, X. [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
X-Gorenstein projective object; X-Gorenstein projective dimension; F-preenvelope; cotorsion pair;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian category with enough projective objects and let X be a full subcategory of A. We define Gorenstein projective objects with respect to X and Y-X, respectively, where Y-X={Y is an element of Ch(A)vertical bar Y is acyclic and Z(n)Y is an element of X}. We point out that under certain hypotheses, these two Gorensein projective objects are related in a nice way. In particular, if P(A) subset of X, we show that X is an element of Ch(A) is Gorenstein projective with respect to Y-X if and only if X-i is Gorenstein projective with respect to X for each i, when X is a self-orthogonal class or X is Hom(-, X)-exact. Subsequently, we consider the relationships of Gorenstein projective dimensions between them. As an application, if A is of finite left Gorenstein projective global dimension with respect to X and contains an injective cogenerator, then we find a new model structure on Ch(A) by Hovey's results in [14].
引用
收藏
页码:1079 / 1097
页数:19
相关论文
共 50 条
  • [1] Gorenstein projective objects in comma categories
    Peng, Yeyang
    Zhu, Rongmin
    Huang, Zhaoyong
    PERIODICA MATHEMATICA HUNGARICA, 2022, 84 (02) : 186 - 202
  • [2] GORENSTEIN PROJECTIVE OBJECTS IN FUNCTOR CATEGORIES
    Kvamme, Sondre
    NAGOYA MATHEMATICAL JOURNAL, 2020, 240 : 1 - 41
  • [3] Gorenstein projective objects in comma categories
    Yeyang Peng
    Rongmin Zhu
    Zhaoyong Huang
    Periodica Mathematica Hungarica, 2022, 84 : 186 - 202
  • [4] Relative Gorenstein objects in abelian categories
    Becerril, Victor
    Mendoza, Octavio
    Santiago, Valente
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (01) : 352 - 402
  • [5] Gorenstein cohomology in abelian categories
    Sather-Wagstaff, Sean
    Sharif, Tirdad
    White, Diana
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2008, 48 (03): : 571 - 596
  • [6] Projective objects in the categories of abelian ℓ-groups and MV-algebras
    William Young
    Algebra universalis, 2014, 71 : 191 - 200
  • [7] Gorenstein objects in triangulated categories
    Asadollahi, J
    Salarian, S
    JOURNAL OF ALGEBRA, 2004, 281 (01) : 264 - 286
  • [8] Gorenstein projective bimodules via monomorphism categories and filtration categories
    Hu, Wei
    Luo, Xiu-Hua
    Xiong, Bao-Lin
    Zhou, Guodong
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 1014 - 1039
  • [9] Projective objects in the categories of abelian l-groups and MV-algebras
    Young, William
    ALGEBRA UNIVERSALIS, 2014, 71 (02) : 191 - 200
  • [10] Gorenstein global dimension of recollements of abelian categories
    Zhang, Houjun
    Zhu, Xiaosheng
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 467 - 483