MAGENTA MULTI-AGENT SYSTEMS FOR DYNAMIC SCHEDULING

被引:0
|
作者
Andreev, Vyacheslav [1 ]
Glashchenko, Andrey [1 ]
Ivashchenko, Anton [1 ]
Inozemtsev, Sergey [1 ]
Rzevski, George [1 ]
Skobelev, Petr [1 ]
Shveykin, Petr [1 ]
机构
[1] Magenta Technol Ltd, 349 Novo Sadovaya St, Samara 443125, Russia
关键词
Multi-agent systems; Adaptive scheduling; Real time; Mobile resources;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The document presents an overview of Magenta multi-agent solutions for real time scheduling and optimization of mobile resources. Brief survey on traditional scheduling methods, main principles of multi-agent approach, system architecture, functionality, industrial applications and perspectives are described. The multi-agent approach for dynamic scheduling gives opportunity to solve complex problems, react on events in real time, improve resource utilization and provide a number of other benefits.
引用
收藏
页码:489 / +
页数:2
相关论文
共 50 条
  • [1] Dynamic shopfloor scheduling in multi-agent manufacturing systems
    Wong, TN
    Leung, CW
    Mak, KL
    Fung, RYK
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2006, 31 (03) : 486 - 494
  • [2] A Multi-agent Based Dynamic Scheduling of Flexible Manufacturing Systems
    Hussain M.S.
    Ali M.
    [J]. Global Journal of Flexible Systems Management, 2019, 20 (3) : 267 - 290
  • [3] Multi-agent system for dynamic scheduling
    Firme, Bernardo
    Lopes, Guilherme
    Martins, Miguel S. E.
    Coito, Tiago
    Viegas, Joaquim
    Sousa, Joao M. C.
    Reis, Joao C. P.
    Figueiredo, Joao
    Vieira, Susana
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [4] Dynamic scheduling using a pheromone-based approach in multi-agent systems
    Lee, Wonki
    Kim, DaeEun
    [J]. APPLIED SOFT COMPUTING, 2019, 85
  • [5] Multi-agent systems negotiation to deal with dynamic scheduling in disturbed industrial context
    Mezgebe, Tsegay Tesfay
    El Haouzi, Hind Bril
    Demesure, Guillaume
    Pannequin, Remi
    Thomas, Andre
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (06) : 1367 - 1382
  • [6] Application of Multi-agent Reinforcement Learning to the Dynamic Scheduling Problem in Manufacturing Systems
    Heik, David
    Bahrpeyma, Fouad
    Reichelt, Dirk
    [J]. MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT II, 2024, 14506 : 237 - 254
  • [7] Knowledge-based Multi-Agent Architecture for Dynamic Scheduling in Manufacturing Systems
    Merdan, Munir
    Vrba, Pavel
    Koppensteiner, Gottfried
    Zoitl, Alois
    [J]. 2008 6TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, VOLS 1-3, 2008, : 1037 - +
  • [8] Multi-agent systems negotiation to deal with dynamic scheduling in disturbed industrial context
    Tsegay Tesfay Mezgebe
    Hind Bril El Haouzi
    Guillaume Demesure
    Remi Pannequin
    Andre Thomas
    [J]. Journal of Intelligent Manufacturing, 2020, 31 : 1367 - 1382
  • [9] A multi-agent approach to support dynamic scheduling decisions
    Gozzi, A
    Paolucci, M
    Boccalatte, A
    [J]. ISCC 2002: SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 2002, : 983 - 988
  • [10] Using multi-agent architecture in FMS for dynamic scheduling
    Kouiss, K
    Pierreval, H
    Mebarki, N
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 1997, 8 (01) : 41 - 47