Automatically Adapted Perfectly Matched Layers for Problems with High Contrast Materials Properties

被引:4
|
作者
Alvarez-Aramberri, J. [1 ]
Pardo, D. [2 ]
Barucq, H. [3 ]
机构
[1] Univ Basque Country UPV EHU, Bilbao, Spain
[2] Univ Basque Country UPV EHU, Dept Appl Math, Basque Fdn Sci, Stat & Operat Res,Ikerbasque, Bilbao, Spain
[3] Univ Pau, EPC Magique 3D, Inria, LMA, F-64013 Pau, France
关键词
FINITE-ELEMENT-METHOD; ELECTROMAGNETIC APPLICATIONS; INVERSION; WAVES;
D O I
10.1016/j.procs.2014.05.087
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For the simulation of wave propagation problems, it is necessary to truncate the computational domain. Perfectly Matched Layers are often employed for that purpose, especially in high contrast layered materials where absorbing boundary conditions are difficult to design. In here, we define a Perfectly Matched Layer that automatically adjusts its parameters without any user interaction. The user only has to indicate the desired decay in the surrounding layer. With this Perfectly Matched Layer, we show that even in the most complex scenarios where the material contrast properties are as high as sixteen orders of magnitude, we do not introduce numerical reflections when truncating the domain, thus, obtaining accurate solutions.
引用
收藏
页码:970 / 979
页数:10
相关论文
共 37 条
  • [1] EXPONENTIAL CONVERGENCE OF PERFECTLY MATCHED LAYERS FOR SCATTERING PROBLEMS WITH PERIODIC SURFACES
    ZHANG, R. U. M. I. N. G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 804 - 823
  • [2] Application of perfectly matched layers to the transient modeling of subsurface EM problems
    Chen, YH
    Chew, WC
    Oristaglio, ML
    GEOPHYSICS, 1997, 62 (06) : 1730 - 1736
  • [3] Near-Optimal Perfectly Matched Layers for Indefinite Helmholtz Problems
    Druskin, Vladimir
    Guettel, Stefan
    Knizhnerman, Leonid
    SIAM REVIEW, 2016, 58 (01) : 90 - 116
  • [4] Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains
    Bunting, Gregory
    Prakash, Arun
    Walsh, Timothy
    Dohrmann, Clark
    JOURNAL OF THEORETICAL AND COMPUTATIONAL ACOUSTICS, 2018, 26 (02):
  • [5] Contribution of leaky modes in the modal analysis of unbounded problems with perfectly matched layers
    Gallezot, Matthieu
    Treyssede, Fabien
    Laguerre, Laurent
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 141 (01): : EL16 - EL21
  • [6] Perfectly Matched Layers for Time-Harmonic Second Order Elliptic Problems
    A. Bermúdez
    L. Hervella-Nieto
    A. Prieto
    R. Rodríguez
    Archives of Computational Methods in Engineering, 2010, 17 : 77 - 107
  • [7] Perfectly Matched Layers for Time-Harmonic Second Order Elliptic Problems
    Bermudez, A.
    Hervella-Nieto, L.
    Prieto, A.
    Rodriguez, R.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (01) : 77 - 107
  • [8] Perfectly Matched Layers for Frequency-Domain Integral Equation Acoustic Scattering Problems
    Alles, Erwin J.
    van Dongen, Koen W. A.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (05) : 1077 - 1086
  • [9] Partition of Unity Finite Element Method applied to exterior problems with Perfectly Matched Layers
    Langlois, Christophe
    Chazot, Jean-Daniel
    Perrey-Debain, Emmanuel
    Nennig, Benoit
    ACTA ACUSTICA, 2020, 4 (04):
  • [10] On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients
    Bonnet-Ben Dhia, A. -S.
    Carvalho, C.
    Chesnel, L.
    Ciarlet, P., Jr.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 322 : 224 - 247