Assessing the Capability of a Manufacturing Process Using Nonparametric Bayesian Density Estimation

被引:7
|
作者
Polansky, Alan M. [1 ]
机构
[1] No Illinois Univ, Div Stat, De Kalb, IL 60115 USA
关键词
Dirichlet Distribution; Normal Mixture; Process Fallout Rate; Process Yield; POLYA TREE; DISTRIBUTIONS; YIELD;
D O I
10.1080/00224065.2014.11917960
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The capability of a manufacturing process refers to the ability of the process to produce items that are within set specifications. The determination of the capability of a stable manufacturing process with a multivariate quality characteristic using standard methods usually requires the assumption that the quality characteristic of interest follows a multivariate normal distribution, an assumption that is difficult to assess in practice. Departures from this assumption can result in erroneous conclusions, which can be costly to the manufacturer. In this paper, we propose assessing the capability of a process using a nonparametric Bayesian framework. This framework relies on using mixtures of Dirichlet processes to elicit a prior on the multivariate distribution of the quality characteristic. The posterior distribution of the distribution of the quality characteristic can then be used to induce a posterior distribution on the process fallout rate, the mean distance between the quality characteristic and a specified target value, or on an associated process capability index. The methodology is demonstrated through three examples using real-world data. Particular emphasis in these examples is given toward specifying the parameter values required to specify the prior distribution and on interpretation of the results.
引用
收藏
页码:150 / 170
页数:21
相关论文
共 50 条
  • [1] BAYESIAN NONPARAMETRIC ESTIMATION OF THE SPECTRAL DENSITY OF A LONG OR INTERMEDIATE MEMORY GAUSSIAN PROCESS
    Rousseau, Judith
    Chopin, Nicolas
    Liseo, Brunero
    [J]. ANNALS OF STATISTICS, 2012, 40 (02): : 964 - 995
  • [2] Bayesian Nonparametric Spatially Smoothed Density Estimation
    Hanson, Timothy
    Zhou, Haiming
    de Carvalho, Vanda Inacio
    [J]. NEW FRONTIERS OF BIOSTATISTICS AND BIOINFORMATICS, 2018, : 87 - 105
  • [3] Comparison of Bayesian nonparametric density estimation methods
    Bedoui, Adel
    Rosen, Ori
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (19) : 6667 - 6682
  • [4] Bayesian Fault Diagnosis of RF Circuits Using Nonparametric Density Estimation
    Huang, Ke
    Stratigopoulos, Haralampos-G.
    Mir, Salvador
    [J]. 2010 19TH IEEE ASIAN TEST SYMPOSIUM (ATS 2010), 2010, : 295 - 298
  • [5] Bayesian density estimation and model selection using nonparametric hierarchical mixtures
    Argiento, Raffaele
    Guglielmi, Alessandra
    Pievatolo, Antonio
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 816 - 832
  • [6] ASSESSING PROCESS CAPABILITY - A BAYESIAN-APPROACH
    CHENG, SW
    SPIRING, FA
    [J]. IIE TRANSACTIONS, 1989, 21 (01) : 97 - 98
  • [7] Bayesian nonparametric spectral density estimation using B-spline priors
    Matthew C. Edwards
    Renate Meyer
    Nelson Christensen
    [J]. Statistics and Computing, 2019, 29 : 67 - 78
  • [8] Bayesian nonparametric spectral density estimation using B-spline priors
    Edwards, Matthew C.
    Meyer, Renate
    Christensen, Nelson
    [J]. STATISTICS AND COMPUTING, 2019, 29 (01) : 67 - 78
  • [9] Nonparametric Bayesian online change point detection using kernel density estimation with nonparametric hazard function
    Prabpon, Naruesorn
    Homsud, Kitakorn
    Vatiwutipong, Pat
    [J]. STATISTICS AND COMPUTING, 2024, 34 (02)
  • [10] Nonparametric Bayesian online change point detection using kernel density estimation with nonparametric hazard function
    Naruesorn Prabpon
    Kitakorn Homsud
    Pat Vatiwutipong
    [J]. Statistics and Computing, 2024, 34