Improved upper bounds on synchronizing nondeterministic automata

被引:11
|
作者
Gazdag, Zsolt [2 ]
Ivan, Szabolcs [1 ]
Nagy-Gyoergy, Judit [1 ]
机构
[1] Univ Szeged, Szeged, Hungary
[2] Eotvos Lorand Univ, Budapest, Hungary
关键词
Algorithms; Combinatorial problems;
D O I
10.1016/j.ipl.2009.05.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that i-directable nondeterministic automata can be i-directed with a word of length O(2(n)) for i = 1, 2, where n stands for the number of states. Since for i = 1, 2 there exist i-directable automata having i-directing words of length Omega(2(n)), these upper bounds are asymptotically optimal. We also show that a 3-directable nondeterministic automaton with n states can be 3-directed with a word of length O(n(2) . (3)root 4(n)), improving the previously known upper bound O(2(n)). Here the best known lower bound is Omega((3)root 3(n)). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:986 / 990
页数:5
相关论文
共 50 条
  • [1] AUTOMATA WITH MODULO COUNTERS AND NONDETERMINISTIC COUNTER BOUNDS
    Reidenbach, Daniel
    Schmid, Markus L.
    KYBERNETIKA, 2014, 50 (01) : 66 - 94
  • [2] Lower Bounds for Synchronizing Word Lengths in Partial Automata
    De Bondt, Michiel
    Don, Henk
    Zantema, Hans
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (01) : 29 - 60
  • [3] Finding shortest D1-synchronizing words for nondeterministic finite automata
    Zhu K.
    Wu G.
    Yuan M.
    Yang L.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (02): : 68 - 73
  • [4] Computational Complexity of Certain Problems Related to Carefully Synchronizing Words for Partial Automata and Directing Words for Nondeterministic Automata
    Pavel Martyugin
    Theory of Computing Systems, 2014, 54 : 293 - 304
  • [5] Computational Complexity of Certain Problems Related to Carefully Synchronizing Words for Partial Automata and Directing Words for Nondeterministic Automata
    Martyugin, Pavel
    THEORY OF COMPUTING SYSTEMS, 2014, 54 (02) : 293 - 304
  • [6] Nondeterministic fuzzy automata
    Cao, Yongzhi
    Ezawa, Yoshinori
    INFORMATION SCIENCES, 2012, 191 : 86 - 97
  • [7] Nondeterministic Cellular Automata
    Di Lena, Pietro
    Margara, Luciano
    INFORMATION SCIENCES, 2014, 287 : 13 - 25
  • [8] New upper bounds to the limitedness of distance automata
    Hashiguchi, K
    THEORETICAL COMPUTER SCIENCE, 2000, 233 (1-2) : 19 - 32
  • [9] On Monogenic Nondeterministic Automata
    Imreh, Csanad
    Ito, Masami
    ACTA CYBERNETICA, 2008, 18 (04): : 777 - 782
  • [10] ON COMPLETENESS OF NONDETERMINISTIC AUTOMATA
    GECSEG, F
    IMREH, B
    ACTA MATHEMATICA HUNGARICA, 1995, 68 (1-2) : 151 - 159