Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals

被引:0
|
作者
Zhong, Li [1 ]
Sansoz, Frederic [2 ,3 ]
He, Yang [1 ]
Wang, Chongmin [4 ]
Zhang, Ze [5 ,6 ]
Mao, Scott X. [1 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[2] Univ Vermont, Dept Mech Engn, Burlington, VT 05405 USA
[3] Univ Vermont, Mat Sci Program, Burlington, VT 05405 USA
[4] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[5] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China
[6] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
DISLOCATION NUCLEATION; MECHANICAL-PROPERTIES; DEFORMATION; PLASTICITY; GOLD; SUPERPLASTICITY; DIFFUSION; STRENGTH; BEHAVIOR; NICKEL;
D O I
10.1038/NMAT4813
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoscale metallic crystals have been shown to follow a 'smaller is stronger' trend. However, they usually suffer from low ductility due to premature plastic instability by source-limited crystal slip. Here, by performing in situ atomic-scale transmission electron microscopy, we report unusual room-temperature super-elongation without softening in face-centred-cubic silver nanocrystals, where crystal slip serves as a stimulus to surface diffusional creep. This interplay mechanism is shown experimentally and theoretically to govern the plastic deformation of nanocrystals over a material-dependent sample diameter range between the lower and upper limits for nanocrystal stability by surface diffusional creep and dislocation plasticity, respectively, which extends far beyond the maximum size for pure diffusion-mediated deformation (for example, Coble-type creep). This work provides insight into the atomic-scale coupled diffusive-displacive deformation mechanisms, maximizing ductility and strength simultaneously in nanoscale materials.
引用
收藏
页码:439 / +
页数:8
相关论文
共 38 条
  • [1] Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals
    Li Zhong
    Frederic Sansoz
    Yang He
    Chongmin Wang
    Ze Zhang
    Scott X. Mao
    Nature Materials, 2017, 16 (4) : 439 - 445
  • [2] Room-temperature super-elongation in high-entropy alloy nanopillars
    Zhang, Qian
    Niu, Ranming
    Liu, Ying
    Jiang, Jiaxi
    Xu, Fan
    Zhang, Xuan
    Cairney, Julie M.
    An, Xianghai
    Liao, Xiaozhou
    Gao, Huajian
    Li, Xiaoyan
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Room-temperature super-elongation in high-entropy alloy nanopillars
    Qian Zhang
    Ranming Niu
    Ying Liu
    Jiaxi Jiang
    Fan Xu
    Xuan Zhang
    Julie M. Cairney
    Xianghai An
    Xiaozhou Liao
    Huajian Gao
    Xiaoyan Li
    Nature Communications, 14
  • [4] Room-temperature creep resistance of Co-based metallic glasses
    Yu, P. F.
    Feng, S. D.
    Xu, G. S.
    Guo, X. L.
    Wang, Y. Y.
    Zhao, W.
    Qi, L.
    Li, G.
    Liaw, P. K.
    Liu, R. P.
    SCRIPTA MATERIALIA, 2014, 90-91 : 45 - 48
  • [5] Room-temperature creep and structural relaxation of Mg-Cu-Y metallic glasses
    Castellero, A.
    Moser, B.
    Uhlenhaut, D. I.
    Dalla Torre, F. H.
    Loeffler, J. F.
    ACTA MATERIALIA, 2008, 56 (15) : 3777 - 3785
  • [6] Surface activated room-temperature bonding in Ar gas ambient for MEMS encapsulation
    Takagi, Hideki
    Kurashima, Yuichi
    Takamizawa, Akifumi
    Ikegami, Takeshi
    Yanagimachi, Shinya
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (02)
  • [7] Surface Activated Room-temperature Bonding in Ar Gas Ambience for MEMS Encapsulation
    Takagi, Hideki
    Kurashima, Yuichi
    2017 5TH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE BONDING FOR 3D INTEGRATION (LTB-3D), 2017, : 46 - 46
  • [8] Room-temperature interconnection of electroplated an microbump by means of surface activated bonding method
    Matsuzawa, Y
    Itoh, T
    Suga, T
    51ST ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, 2001, : 384 - 387
  • [9] Dependence of room-temperature nanoindentation creep behavior and shear transformation zone on the glass transition temperature in bulk metallic glasses
    Zhao, X. N.
    Cao, Q. P.
    Wang, C.
    Wang, X. D.
    Zhang, D. X.
    Qu, S. X.
    Jiang, J. Z.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2016, 445 : 19 - 29
  • [10] PRIMARY-CREEP CRACK-GROWTH AT ROOM-TEMPERATURE IN SURFACE-CRACKED PIPES
    BRUST, FW
    LEIS, BN
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 1992, 52 (02) : 273 - 298