Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a potentially lethal autoimmune disease whose pathology comprises disturbed T cell differentiation and functionality accompanied by dysfunctional autoreactive immunoglobulin development, culminating in destructive innate immune response as well. Purines, adenine nucleotides and adenosine in particular, have been elucidated as potent extracellular mediators for fine adjustment of these pivotal processes establishing human immunity. Therefore, the extracellular purinergic microenvironment is under control of ectonucleotidases CD39 and CD73 degrading pro-inflammatory adenosine triphosphate (ATP) to anti-inflammatory adenosine as well as adenosine deaminase bound to CD26 deactivating adenosine. Accordingly, the ATP P2X7 receptor was elicited to be responsible for promotion of inflammation, while predominantly the adenosine A2A receptor demonstrated the opposite. Recent reports pointed at the adenosinergic system to be crucially involved in AAV pathogenesis. Here, experimental evidence on ectoenzymes controlling extracellular adenine nucleotide concentrations and purinergic signalling in the immune system with respect to its contribution to the AAV pathomechanism is reviewed besides unsolved problems being identified that require further investigation in order to develop new treatment strategies for AAV.