Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms

被引:1
|
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Inst Math, Fac Math Informat & Mech, PL-02097 Warsaw, Poland
来源
关键词
Fourier multiplier; Singular integral; Martingale; LOGARITHMIC INEQUALITIES; CONVEX INTEGRATION; MARTINGALES; COUNTEREXAMPLES; CONSTANTS;
D O I
10.2478/s11533-014-0401-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of L,vy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on a"e (d) . The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2x2, and some transference-type arguments.
引用
收藏
页码:1198 / 1213
页数:16
相关论文
共 50 条