A quadratic Particle Swarm Optimization and its self-adaptive parameters

被引:0
|
作者
Yang, Yaping [1 ]
Tan, Ying [1 ]
Zeng, Jianchao [1 ]
机构
[1] Taiyuan Univ Sci & Technol, Taiyuan 030024, Peoples R China
关键词
quadratic PSO; standard PSO; parameter;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Particle Swarm Optimization(PSO) is a kind of random optimization algorithm based on the swarm intelligence. This paper presents a Quadratic PSO by improving the standard PSO's evolution equation on the foundation of analyzing standard PSO's model and its mechanisms, and introduces a parameter automation strategy for it on the basis of comparing Quadratic PSO with PSO and analyzing the impact that the parameters have on the performance of algorithm. The simulation illustrates that the new method improved the performance of the PSO. Further, for most of the benchmarks function, the self-adapting parameters strategy outperformed the fixed parameters. The experimental results show that the Quadratic PSO is feasible and the strategy is correct and efficient.
引用
收藏
页码:3265 / +
页数:2
相关论文
共 8 条
  • [1] CLERC M, 1999, P C EV COMP
  • [2] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
  • [3] KENNEDY J, 1998, LECT NOTES COMPUTER, V1447, P591
  • [4] LOVBHERG M, 2001, P GEN EV COMP C SAN
  • [5] Lovbjerg M, 2002, IEEE C EVOL COMPUTAT, P1588, DOI 10.1109/CEC.2002.1004479
  • [6] Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    Ratnaweera, A
    Halgamuge, SK
    Watson, HC
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) : 240 - 255
  • [7] SUGANTHAN PN, 1999, P 1999 C EV COMP, V3, P1958, DOI DOI 10.1109/CEC.1999.785514
  • [8] Xie XF, 2002, IEEE C EVOL COMPUTAT, P1456