Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle

被引:242
|
作者
Dai, Yiping [1 ]
Wang, Jiangfeng [1 ]
Gao, Lin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Inst Turbomachinery, Xian 710049, Peoples R China
关键词
Cogeneration; Exergy; Parameter; Optimization; SYSTEM; DESIGN;
D O I
10.1016/j.applthermaleng.2008.09.016
中图分类号
O414.1 [热力学];
学科分类号
摘要
A new combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the ejector refrigeration cycle. This combined cycle produces both power output and refrigeration output simultaneously. It can be driven by the flue gas of gas turbine or engine, solar energy, geothermal energy and industrial waste heats. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. And a parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the performance of the combined cycle. In addition, a parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The results show that the biggest exergy loss due to the irreversibility occurs in heat addition processes, and the ejector causes the next largest exergy loss. It is also shown that the turbine inlet pressure, the turbine back pressure, the condenser temperature and the evaporator temperature have significant effects on the turbine power output, refrigeration output and exergy efficiency of the combined cycle. The optimized exergy efficiency is 27.10% under the given condition. (C) 2008 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1983 / 1990
页数:8
相关论文
共 50 条
  • [1] Analysis of a novel combined power and ejector-refrigeration cycle
    Yang, Xingyang
    Zheng, Nan
    Zhao, Li
    Deng, Shuai
    Li, Hailong
    Yu, Zhixin
    ENERGY CONVERSION AND MANAGEMENT, 2016, 108 : 266 - 274
  • [2] Parametric analysis and optimization for a combined power and refrigeration cycle
    Wang, Jiangfeng
    Dai, Yiping
    Gao, Lin
    APPLIED ENERGY, 2008, 85 (11) : 1071 - 1085
  • [3] Thermodynamic analysis and optimization of a novel combined power and ejector refrigeration cycle - Desalination system
    Sadeghi, Mohsen
    Yari, Mortaza
    Mahmoudi, S. M. S.
    Jafari, Moharram
    APPLIED ENERGY, 2017, 208 : 239 - 251
  • [4] Parametric analysis for a new combined power and ejector-absorption refrigeration cycle
    Wang, Jiangfeng
    Dai, Yiping
    Zhang, Taiyong
    Ma, Shaolin
    ENERGY, 2009, 34 (10) : 1587 - 1593
  • [5] Analysis of a combined power and refrigeration cycle by the exergy method
    Vidal, A.
    Best, R.
    Rivero, R.
    Cervantes, J.
    ENERGY, 2006, 31 (15) : 3401 - 3414
  • [6] Analysis of a combined power and refrigeration cycle by the exergy method
    Vidal, A
    Best, R
    Rivero, R
    Cervantes, J
    Energy-Efficient, Cost-Effective and Environmentally-Sustainable Systems and Processes, Vols 1-3, 2004, : 1207 - 1218
  • [7] Thermodynamic analysis of a novel combined power and refrigeration cycle comprising of EKalina and ejector refrigeration cycles
    Behnam, Pooria
    Faegh, Meysam
    Shafii, Mohammad Behshad
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 104 : 291 - 301
  • [8] Parametric analysis of a combined ejector-vapor compression refrigeration cycle
    Ouelhazi, I
    Ezzaalouni, Y.
    Kairouani, L.
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2020, 15 (03) : 398 - 408
  • [9] Thermodynamic analysis of a combined power/refrigeration cycle: Combination of Kalina cycle and ejector refrigeration cycle
    Seckin, Candeniz
    ENERGY CONVERSION AND MANAGEMENT, 2018, 157 : 631 - 643
  • [10] Energy and exergy analysis of a novel ejector-absorption combined refrigeration cycle using natural refrigerants
    Verma, Abhishek
    Kaushik, S. C.
    Tyagi, S. K.
    INTERNATIONAL JOURNAL OF EXERGY, 2022, 39 (02) : 142 - 159