Direct Adaptive Control of Process Control Benchmark Using Dynamic Recurrent Neural Network

被引:0
|
作者
Hussien, Mohamed A. [1 ]
Mahmoud, Tarek A. [1 ]
Mahmoud, Mohamed I. [1 ]
机构
[1] Menoufia Univ, Ind Elect & Control Engn Dept, Fac Elect Engn, Shibin Al Kawm, Egypt
关键词
Direct adaptive control; Dynamic recurrent neural network; State space neural network; Flow control system; MODEL-PREDICTIVE CONTROL; SYSTEMS;
D O I
10.1007/978-3-319-48308-5_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we develop a direct adaptive control scheme based on Dynamic Recurrent Neural Network (DRNN) for a process control benchmark. The DRNN is represented in a general nonlinear state space form for producing the control action that force the system output to a desired trajectory. The control algorithm can be implemented without a priori knowledge of the controlled system. Indeed, the weights of the DRNN controller are adjusted on-line using the truncated Back Propagation Through Time (BPTT) method. Unlike the approaches in the literature, the learning signal of the network weights is generated by a control error estimator stage in the developed controller. Finally, the developed controller is applied to a laboratory flow control system with two experimental scenarios.
引用
收藏
页码:277 / 289
页数:13
相关论文
共 50 条
  • [1] Direct Adaptive Neural Network Control for Wastewater Treatment Process
    Zhang, Wei
    Qiao, Jun-fei
    [J]. 2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 4003 - 4008
  • [2] Adaptive Control of Dynamic Nonlinear Systems Using Sigmoid Diagonal Recurrent Neural Network
    Aboueldahab, Tarek
    Fakhreldin, Mahumod
    [J]. IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [3] Indirect adaptive neural network control using dynamic surface control
    Zhang Tianping
    Li Hongchun
    Wang Qin
    [J]. PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 756 - +
  • [4] Direct adaptive control of turning complex rotary profile using dynamic neural network
    Liu, TZ
    Li, ZL
    Lu, BH
    Li, DC
    [J]. ADVANCED DESIGN AND MANUFACTURE IN THE GLOBAL MANUFACTURING ERA, VOL 2, 1997, : 870 - 875
  • [5] Adaptive Control of Neutralization Process Using Recurrent Neural Networks
    Balasubramanian, G.
    Hariprasad, K.
    Sivakumaran, N.
    Radhakrishnan, T. K.
    [J]. INSTRUMENTATION SCIENCE & TECHNOLOGY, 2009, 37 (04) : 383 - 396
  • [6] Adaptive Predictive Control Using Recurrent Neural Network Identification
    Akpan, Vincent A.
    Hassapis, George
    [J]. MED: 2009 17TH MEDITERRANEAN CONFERENCE ON CONTROL & AUTOMATION, VOLS 1-3, 2009, : 61 - 66
  • [7] Adaptive Control of Multivariable Process Using Recurrent Neural Networks
    Balasubramanian, G.
    Hariprasad, K.
    Sivakumaran, N.
    Radhakrishnan, T. K.
    [J]. INSTRUMENTATION SCIENCE & TECHNOLOGY, 2009, 37 (06) : 615 - 630
  • [8] Robust optimal control using recurrent dynamic neural network
    Karam, M
    Zohdy, MA
    Farinwata, SS
    [J]. PROCEEDINGS OF THE 2001 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC'01), 2001, : 331 - 336
  • [9] Multivariable adaptive control of nonlinear unknown dynamic systems using recurrent neural-network
    Hwang, Chih-Lyang
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 5006 - 5011
  • [10] Hybrid neural network/conventional control of a benchmark process control problem
    Doerschuk, PI
    Sarrafian, E
    Mekic, M
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 97 - 101