Three dimensional modelling of ICRF launchers for fusion devices

被引:43
|
作者
Carter, MD [1 ]
Rasmussen, DA [1 ]
Ryan, PM [1 ]
Hanson, GR [1 ]
Stallings, DC [1 ]
Batchelor, DB [1 ]
Bigelow, TS [1 ]
England, AC [1 ]
Hoffman, DJ [1 ]
Murakami, M [1 ]
Wang, CY [1 ]
Wilgen, JB [1 ]
Rogers, JH [1 ]
Wilson, JR [1 ]
Majeski, R [1 ]
Schilling, G [1 ]
机构
[1] PRINCETON UNIV,PRINCETON PLASMA PHYS LAB,PRINCETON,NJ 08543
关键词
D O I
10.1088/0029-5515/36/2/I08
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The three dimensional (3-D) nature of antennas for fusion applications in the ion cyclotron range of frequencies (ICRF) requires accurate modelling to design and analyse new antennas. In this article, analysis and design tools for radiofrequency (RF) antennas are successfully benchmarked with experiment, and the 3-D physics of the launched waves is explored. The systematic analysis combines measured density profiles from a reflectometer system, transmission line circuit modelling, detailed 3-D magnetostatics modelling and a new 3-D electromagnetic antenna model including plasma. This analysis gives very good agreement with measured loading data from the Tokamak Fusion Test Reactor (TFTR) Bay-M antenna, thus demonstrating the validity of the analysis for the design of new RF antennas. The 3-D modelling is contrasted with 2-D models, and significant deficiencies are found in the latter. The 2-D models are in error by as much as a factor of 2 in real and reactive loading, even after they are corrected for the most obvious 3-D effects. Three dimensional effects play the most significant role at low parallel wavenumbers, where the launched power spectrum can be quite different from the predictions of 2-D models. Three dimensional effects should not be ignored for many RF designs, especially those intended for fast wave current drive.
引用
收藏
页码:209 / 223
页数:15
相关论文
共 50 条
  • [1] ICRF Traveling Wave launcher for fusion devices
    Ragona, R.
    [J]. 7TH YOUNG RESEARCHER MEETING, 2017, 841
  • [2] Three-dimensional RF and circuit modelling of the revised ITER ICRF launcher design
    Louche, Fabrice
    Durodie, Frederic
    Helou, Walid
    Lamalle, Philippe U.
    Calarco, Francois
    [J]. 23RD TOPICAL CONFERENCE ON RADIOFREQUENCY POWER IN PLASMAS, 2020, 2254
  • [3] Three-dimensional electromagnetic modelling of the JET ITER-like ICRF antenna
    Lamalle, PU
    Durodié, F
    Whitehurst, A
    Goulding, RH
    Ryan, PM
    [J]. RADIO FREQUENCY POWER IN PLASMAS, 2003, 694 : 122 - 125
  • [4] A novel approach for solving three dimensional eddy current problems in fusion devices
    Bettini, Paolo
    Specogna, Ruben
    [J]. FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 703 - 706
  • [5] Heat loads on tore supra ICRF launchers plasma facing components
    Brémond, S
    Colas, L
    Chantant, M
    Beaumont, B
    Ekedahl, A
    Goniche, M
    Moreau, P
    Mitteau, R
    [J]. Radio Frequency Power in Plasmas, 2005, 787 : 210 - 213
  • [6] Physics and applications of three-ion ICRF scenarios for fusion research
    Kazakov, Ye O.
    Ongena, J.
    Wright, J. C.
    Wukitch, S. J.
    Bobkov, V
    Garcia, J.
    Kiptily, V. G.
    Mantsinen, M. J.
    Nocente, M.
    Schneider, M.
    Weisen, H.
    Baranov, Y.
    Baruzzo, M.
    Bilato, R.
    Chomiczewska, A.
    Coelho, R.
    Craciunescu, T.
    Crombe, K.
    Dreval, M.
    Dumont, R.
    Dumortier, P.
    Durodie, F.
    Eriksson, J.
    Fitzgerald, M.
    Galdon-Quiroga, J.
    Gallart, D.
    Garcia-Munoz, M.
    Giacomelli, L.
    Giroud, C.
    Gonzalez-Martin, J.
    Hakola, A.
    Jacquet, P.
    Johnson, T.
    Kappatou, A.
    Keeling, D.
    King, D.
    Kirov, K. K.
    Lamalle, P.
    Lennholm, M.
    Lerche, E.
    Maslov, M.
    Mazzi, S.
    Menmuir, S.
    Monakhov, I
    Nabais, F.
    Nave, M. F. F.
    Ochoukov, R.
    Polevoi, A. R.
    Pinches, S. D.
    Plank, U.
    [J]. PHYSICS OF PLASMAS, 2021, 28 (02)
  • [7] Three-dimensional modeling of sputtered materials transport in diagnostic ducts of fusion devices
    Babinov, N. A.
    Razdobarin, A. G.
    Bukreev, I. M.
    Kirilenko, D. A.
    Lyullin, Z. G.
    Mukhin, E. E.
    Sitnikova, A. A.
    Varshavchik, L. A.
    Zatylkin, P. A.
    Putrik, A.
    Klimov, N. S.
    Kovalenko, D., V
    Zhitlukhin, A. M.
    Morgan, T.
    Brons, S.
    De Temmerman, G.
    Serenkov, I. T.
    Sakharov, V., I
    Bulovich, S., V
    Gorodetsky, A. E.
    Zalavutdinov, R. Kh
    [J]. NUCLEAR FUSION, 2022, 62 (12)
  • [8] Three-dimensional linear peeling-ballooning theory in magnetic fusion devices
    Weyens, T.
    Sanchez, R.
    Garcia, L.
    Loarte, A.
    Huijsmans, G.
    [J]. PHYSICS OF PLASMAS, 2014, 21 (04)
  • [9] Three-dimensional modelling tools supports material handling devices operational quality
    Szpytko, J
    Schab, J
    [J]. 16TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED PRODUCTION ENGINEERING - CAPE 2000, 2000, 2000 (05): : 57 - 60
  • [10] Modelling the temperature conditions in three-dimensional piecewise homogeneous elements for microelectronic devices
    Gavrysh, V. I.
    [J]. SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2011, 14 (04) : 478 - 481