Positive solutions for a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response

被引:10
|
作者
Zhou Jun [1 ]
Kim, Chan-Gyun [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Lotka-Volterra prey-predator model; Holling type-II functional response; cross-diffusion; positive solutions; coexistence; uniqueness; degree theory; STEADY-STATE SOLUTIONS; COEXISTENCE STATES; SPATIAL SEGREGATION; ELLIPTIC-SYSTEMS; SELF; COMPETITION; EQUATIONS; STABILITY; DYNAMICS;
D O I
10.1007/s11425-013-4711-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response. The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response. Here, a positive solution corresponds to a coexistence state of the model. Firstly, we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane. In addition, we present the uniqueness of positive solutions in one dimension case. Secondly, we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system, and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.
引用
收藏
页码:991 / 1010
页数:20
相关论文
共 50 条