On the defining relations for generalized q-Schur algebras

被引:5
|
作者
Doty, Stephen [1 ]
Giaquinto, Anthony [1 ]
Sullivan, John [2 ]
机构
[1] Loyola Univ, Dept Math & Stat, Chicago, IL 60626 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
q-Schur algebras; Generalized Schur algebras; Quantized enveloping algebras;
D O I
10.1016/j.aim.2009.01.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the defining relations needed to describe a generalized q-Schur algebra as a quotient of a quantized enveloping algebra are determined completely by the defining ideal of a certain finite affine variety, the points of which correspond bijectively to the set of weights. This explains, unifies, and extends previous results. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:955 / 982
页数:28
相关论文
共 50 条
  • [1] Generalized q-Schur algebras and quantum Frobenius
    McGerty, Kevin
    ADVANCES IN MATHEMATICS, 2007, 214 (01) : 116 - 131
  • [2] THE q-SCHUR ALGEBRAS AND q-SCHUR DUALITIES OF FINITE TYPE
    Luo, Li
    Wang, Weiqiang
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2022, 21 (01) : 129 - 160
  • [3] Generalized q-Schur algebras and the ways to approach them
    Du, J
    MODULAR REPRESENTATION THEORY OF FINITE GROUPS, 2001, : 189 - 210
  • [4] Codeterminants and q-Schur Algebras
    Gerald Cliff
    Anna Stokke
    Algebras and Representation Theory, 2010, 13 : 43 - 60
  • [5] Codeterminants and q-Schur Algebras
    Cliff, Gerald
    Stokke, Anna
    ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (01) : 43 - 60
  • [6] Symplectic q-Schur algebras
    Oehms, Sebastian
    JOURNAL OF ALGEBRA, 2006, 304 (02) : 851 - 905
  • [7] Cells and q-Schur algebras
    Du J.
    Parshall B.
    Scott L.
    Transformation Groups, 1998, 3 (1) : 33 - 49
  • [8] Cyclotomic q-Schur algebras
    Dipper, R
    James, G
    Mathas, A
    MATHEMATISCHE ZEITSCHRIFT, 1998, 229 (03) : 385 - 416
  • [9] Presenting affine q-Schur algebras
    Doty, S. R.
    Green, R. M.
    MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (02) : 311 - 345
  • [10] PBW bases of q-Schur algebras
    Gao, Wenting
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (09)