Valuation bases for extensions of valued vector spaces

被引:5
|
作者
Kuhlmann, S
机构
[1] Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288
关键词
D O I
10.1515/form.1996.8.723
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (V,upsilon) be any valued vector space, and (V-0,upsilon) a subspace. Then (V,upsilon) admits a valuation basis over (V-0,upsilon) if and only if it admits a nice composition series over (V-0,upsilon). We show that this is always the case if upsilon(V\V-0) is reversely well ordered. If upsilon(V-0) is reversely well ordered, we show that V-0 is nice in any extension, and that it admits a valuation basis over every subspace. Finally, we show that the property of admitting a valuation basis is preserved under countable dimensional extensions.
引用
收藏
页码:723 / 735
页数:13
相关论文
共 50 条