High contrast circular grating reflector on silicon-on-insulator platform

被引:17
|
作者
Gao, Shitao [1 ,2 ,3 ]
Wang, Yang [1 ,2 ,3 ]
Wang, Ke [2 ,3 ,4 ]
Skafidas, Efstratios [2 ,3 ]
机构
[1] Natl ICT Australia Ltd NICTA Victoria, 115 Batman St, West Melbourne, Vic 3003, Australia
[2] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
[3] Univ Melbourne, Ctr Neural Engn, Melbourne, Vic 3010, Australia
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
澳大利亚研究理事会;
关键词
RIB WAVE-GUIDES; BRAGG GRATINGS; LASER; PHOTONICS; FILTER;
D O I
10.1364/OL.41.000520
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A compact circular high contrast grating (HCG) reflector with a footprint of only 4.03 mu m x 4.32 mu m on 220 nm silicon-on-insulator (SOI) platform is proposed and experimentally demonstrated. The proposed device breaks the high wavelength selectivity limitation for the conventional grating reflectors on a thin SOI platform by using the circular structure in a compact region. In addition, the device provides a high polarization selectivity over a wide wavelength range which is useful for applications such as tunable laser cavities and resonators to provide wide tuning range and high polarization stability. The circular structure based HCG reflector has an ultra-wide operational bandwidth (Delta lambda) of over 385 nm with the center wavelength (lambda) set at 1550 nm, providing a Delta lambda/lambda = 24.83%. An average reflectance high of 94.15% is observed from 1525 to 1610 nm in the experimental measurement. The polarization extinction ratio is greater than 13 dB over the entire measured wavelength range. (C) 2016 Optical Society of America
引用
收藏
页码:520 / 523
页数:4
相关论文
共 50 条
  • [1] High-reflectivity high-contrast grating focusing reflector on silicon-on-insulator wafer
    房文敬
    黄永清
    段晓峰
    刘凯
    费嘉瑞
    任晓敏
    Chinese Physics B, 2016, (11) : 310 - 314
  • [2] High-reflectivity high-contrast grating focusing reflector on silicon-on-insulator wafer
    Fang, Wenjing
    Huang, Yongqing
    Duan, Xiaofeng
    Liu, Kai
    Fei, Jiarui
    Ren, Xiaomin
    CHINESE PHYSICS B, 2016, 25 (11)
  • [3] An Electromechanical Tunable Grating on Silicon-on-Insulator Platform
    Gao, Xumin
    Shi, Zheng
    Li, Xin
    He, Shumin
    Zhu, Hongbo
    Wang, Yongjin
    MICRO-NANO TECHNOLOGY XV, 2014, 609-610 : 1277 - 1282
  • [4] Grating-assisted silicon-on-insulator racetrack resonator reflector
    Boeck, Robert
    Caverley, Michael
    Chrostowski, Lukas
    Jaeger, Nicolas A. F.
    OPTICS EXPRESS, 2015, 23 (20): : 25509 - 25522
  • [5] Fabrication Insensitive Echelle Grating in Silicon-on-Insulator Platform
    Feng, Dazeng
    Qian, Wei
    Liang, Hong
    Kung, Cheng-Chih
    Fong, Joan
    Luff, B. Jonathan
    Asghari, Mehdi
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (05) : 284 - 286
  • [6] An improved curved grating demultiplexer based on silicon-on-insulator platform
    Xie, Yuting
    Guo, Shengqun
    Li, Bangyu
    Xu, Lei
    Huang, Ruimin
    Zhuang, Fengjiang
    Su, Shaojian
    Lin, Zhili
    Qiu, Weibin
    OPTICS COMMUNICATIONS, 2023, 549
  • [7] Planar concave grating demultiplexer on a nanophotonic silicon-on-insulator platform
    Brouckaert, Joost
    Bogaerts, Wim
    Dumon, Pieter
    Schrauwen, Jonathan
    Van Thourhout, Dries
    Baets, Roel
    2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 312 - +
  • [8] Design of a High Contrast Grating GaSb-based VCSEL integrated on Silicon-On-Insulator
    Wang, R.
    Sanchez, D.
    Roelkens, G.
    2013 IEEE PHOTONICS CONFERENCE (IPC), 2013, : 91 - 92
  • [9] Low-loss and High Contrast Silicon-on-Insulator (SOI) Arrayed Waveguide Grating
    Cheung, S. T. S.
    Guan, B.
    Djordjevic, S. S.
    Okamoto, K.
    Yoo, S. J. B.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [10] Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform
    Brouckaert, Joost
    Bogaerts, Wim
    Dumon, Pieter
    Van Thourhout, Dries
    Baets, Roel
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (05) : 1269 - 1275