On Bayesian analysis of mixtures with an unknown number of components

被引:1437
|
作者
Richardson, S
Green, PJ
机构
[1] UNIV BRISTOL,DEPT MATH,BRISTOL BS8 1TW,AVON,ENGLAND
[2] INST NATL SANTE & RECH MED,VILLEJUIF,FRANCE
关键词
birth-and-death process; classification; galaxy data; heterogeneity; lake acidity data; Markov chain Monte Carlo method; normal mixtures; predictive distribution; reversible jump algorithms; sensitivity analysis;
D O I
10.1111/1467-9868.00095
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
New methodology for fully Bayesian mixture analysis is developed, making use of reversible jump Markov chain Monte Carlo methods that are capable of jumping between the parameter subspaces corresponding to different numbers of components in the mixture. A sample from the full joint distribution of all unknown variables is thereby generated, and this can be used as a basis for a thorough presentation of many aspects of the posterior distribution. The methodology is applied here to the analysis of univariate normal mixtures, using a hierarchical prior model that offers an approach to dealing with weak prior information while avoiding the mathematical pitfalls of using improper priors in the mixture context.
引用
收藏
页码:731 / 758
页数:28
相关论文
共 50 条
  • [1] On Bayesian analysis of mixtures with an unknown number of components - Discussion
    Robert, CP
    Aitkin, M
    Cox, DR
    Stephens, M
    Polymenis, A
    Gilks, WR
    Nobile, A
    Hodgson, M
    OHagan, A
    Longford, NT
    Dawid, AP
    Atkinson, AC
    Bernardo, JM
    Besag, J
    Brooks, SP
    Byers, S
    Raftery, A
    Celeux, G
    Cheng, RCH
    Liu, WB
    Chien, YH
    George, EI
    Cressie, N
    Huang, HC
    Gruet, MA
    Heath, SC
    Jennison, C
    Lawson, AB
    Clark, A
    McLachlan, G
    Peel, D
    Mengersen, K
    George, A
    Philippe, A
    Roeder, K
    Wasserman, L
    Schlattmann, P
    Bohning, D
    Titterington, DM
    Tong, H
    West, M
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1997, 59 (04) : 758 - 792
  • [2] Bayesian multivariate Poisson mixtures with an unknown number of components
    Meligkotsidou, Loukia
    [J]. STATISTICS AND COMPUTING, 2007, 17 (02) : 93 - 107
  • [3] Bayesian multivariate Poisson mixtures with an unknown number of components
    Loukia Meligkotsidou
    [J]. Statistics and Computing, 2007, 17 : 93 - 107
  • [4] Overrating Bayesian mixtures of factor analyzers with an unknown number of components
    Papastamoulis, Panagiotis
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 220 - 234
  • [5] Bayesian finite mixtures with an unknown number of components: The allocation sampler
    Agostino Nobile
    Alastair T. Fearnside
    [J]. Statistics and Computing, 2007, 17 : 147 - 162
  • [6] Bayesian finite mixtures with an unknown number of components: The allocation sampler
    Nobile, Agostino
    Fearnside, Alastair T.
    [J]. STATISTICS AND COMPUTING, 2007, 17 (02) : 147 - 162
  • [7] Corrigendum: On Bayesian analysis of mixtures with an unknown number of components (vol 59, pg 731, 1997)
    Richardson, S
    Green, PJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : U3 - U3
  • [8] Bayesian model selection for mixtures of structural equation models with an unknown number of components
    Lee, SY
    Song, XY
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2003, 56 : 145 - 165
  • [9] Clustering multivariate data using factor analytic Bayesian mixtures with an unknown number of components
    Papastamoulis, Panagiotis
    [J]. STATISTICS AND COMPUTING, 2020, 30 (03) : 485 - 506
  • [10] Clustering multivariate data using factor analytic Bayesian mixtures with an unknown number of components
    Panagiotis Papastamoulis
    [J]. Statistics and Computing, 2020, 30 : 485 - 506