Immune evasion of Borrelia burgdorferi:: Insufficient killing of the pathogens by complement and antibody

被引:38
|
作者
Kraiczy, P
Skerka, C
Kirschfink, M
Zipfel, PF
Brade, V
机构
[1] Univ Hosp Frankfurt, Inst Med Microbiol, D-60596 Frankfurt, Germany
[2] Hans Knoll Inst Nat Prod Res, Dept Infect Biol, Jena, Germany
[3] Univ Heidelberg, Dept Immunol, Heidelberg, Germany
关键词
Borrelia burgdorferi; complement; immune evasion; innate immunity; bactericidal antibody;
D O I
10.1016/S1438-4221(02)80027-3
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The innate immune system and, in particular, the complement system play a key role in the elimination of micro-organisms after entrance in the human host. Like other pathogens, borreliae must develop strategies to inactivate host defence mechanisms. By investigating serum (NHS)-susceptibility of borreliae, we found that mainly B. afzelii isolates are serum-resistant, whereas the majority of B. burgdorferi s.s. isolates display an intermediate serum-sensitive phenotype. In contrast, B. garinii isolates are killed effectively by complement and therefore are classified as serum-sensitive. Up to now, we have identified two distinct proteins of 27.5 kDa and 20.7 kDa expressed on the outer surface of borreliae, which interact directly with FHL-1/reconectin and factor H, the two major regulators of the alternative complement pathway. These borrelial proteins are termed CRASPs (complement regulator-acquiring surface proteins). CRASPs are detectable only on serum-resistant borreliae and, accordingly, binding of FHL-1/reconectin and factor H only occur with serum-resistant borrelial isolates. We conclude from these results that the control of complement activation on the borrelial surface is due to the interaction of borrelial CRASPs with host complement regulatory proteins. Thus, CRASPs represent an important mechanism of immune evasion on the part of borrelial isolates belonging mostly to the genospecies B. afzelii. By analysing the Immoral adaptive immune response of patients, we detected sera that killed NHS-resistant borreliae. Borreliacidal activity is observed most frequently with sera of patients at stage III of the disease. The killing of NHS-resistant isolates by these immune sera always requires the combination of antibodies and complement. Bactericidal activity, however, is not detected in all immune sera at the different disease stages, although specific anti-Borrelia antibodies are present according to serological test results. This observation suggests that not all borrelial antigens are able to induce a borreliacidal immune response. In an extensive analysis of 24 immune sera, we identified up to 12 borrelial antigens, including OspC, which possess the greatest potential for the induction of borreliacidal antibody. The borreliacidal potential of anti-OspC antibodies was tested directly on an OspC-expressing borrelial wild-type isolate and a corresponding variant lacking OspC. In these studies, only the wild-type isolate expressing OspC on its surface proved positive for the lytic complement complex, thereby indicating the great importance of this antigen for the control of the infection. Additional studies are required to identify further "protective" antigens among these 12 proteins, all of which are candidates for infection control according to our studies involving patient immune sera. These antigens may include the recently detected CRASPs.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [1] Complement evasion by Borrelia burgdorferi
    Alitalo, A
    Rämö, L
    Jokiranta, TS
    Heikkilä, T
    Panelius, J
    Lahdenne, P
    Seppälä, IJT
    Viljanen, M
    Meri, S
    MOLECULAR IMMUNOLOGY, 1999, 36 (4-5) : 293 - 293
  • [2] Killing of Borrelia burgdorferi by antibody elicited by OspA vaccine is inefficient in the absence of complement
    Nowling, JM
    Philipp, MT
    INFECTION AND IMMUNITY, 1999, 67 (01) : 443 - 445
  • [3] Complement evasion by Borrelia burgdorferi: it takes three to tango
    de Taeye, Steven W.
    Kreuk, Lieselotte
    van Dam, Alje P.
    Hovius, Joppe W.
    Schuijt, Tim J.
    TRENDS IN PARASITOLOGY, 2013, 29 (03) : 119 - 128
  • [4] THE ROLE OF SPECIFIC ANTIBODY AND COMPLEMENT IN KILLING OF BORRELIA-BURGDORFERI BY HUMAN-SERUM
    KOCHI, SK
    JOHNSON, RC
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1988, 539 : 388 - 388
  • [5] Structural Basis for Complement Evasion by Lyme Disease Pathogen Borrelia burgdorferi
    Bhattacharjee, Arnab
    Oeemig, Jesper S.
    Kolodziejczyk, Robert
    Meri, Taru
    Kajander, Tommi
    Lehtinen, Markus J.
    Iwai, Hideo
    Jokiranta, T. Sakari
    Goldman, Adrian
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (26) : 18685 - 18695
  • [6] Identification of an ospC operator critical for immune evasion of Borrelia burgdorferi
    Xu, Qilong
    McShan, Kristy
    Liang, Fang Ting
    MOLECULAR MICROBIOLOGY, 2007, 64 (01) : 220 - 231
  • [7] Immune evasion by tickborne and host-adapted Borrelia burgdorferi
    de Silva, AM
    Fikrig, E
    Hodzic, E
    Kantor, FS
    Telford, SR
    Barthold, SW
    JOURNAL OF INFECTIOUS DISEASES, 1998, 177 (02): : 395 - 400
  • [8] IGG ANTIBODY MEDIATES COMPLEMENT KILLING OF BORRELIA BURGDORFERI BY ACTING AT THE C5B-7 STEP OF THE COMPLEMENT REACTION
    KOCHI, SK
    JOHNSON, RC
    DALMASSO, AP
    FASEB JOURNAL, 1988, 2 (06): : A1648 - A1648
  • [9] Immune evasion of Borrelia burgdorferi by acquisition of human complement regulators FHL-1/reconectin and Factor H
    Kraiczy, P
    Skerka, C
    Kirschfink, M
    Brade, V
    Zipfel, PF
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2001, 31 (06) : 1674 - 1684
  • [10] The complement-killing of Borrelia burgdorferi. Target antigens and sensitizing antibodies
    Cacciapuoti, B
    Ciarrocchi, S
    Ciceroni, L
    ZENTRALBLATT FUR BAKTERIOLOGIE-INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY VIROLOGY PARASITOLOGY AND INFECTIOUS DISEASES, 1998, 288 (01): : 121 - 129