On moment inequalities of the supremum of empirical processes with applications to kernel estimation

被引:2
|
作者
Ahmad, IA [1 ]
机构
[1] Univ Cent Florida, Dept Stat, Orlando, FL 32816 USA
关键词
empirical process; moment inequalities; moment generating functions; upper bounds; kernel density estimates; uniform consistency;
D O I
10.1016/S0167-7152(02)00029-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-1,...,X-n be a random sample from a distribution function F. Let F-n(x) = (1/n) Sigma(i=1)(n)I(X-i less than or equal to x) denote the corresponding empirical distribution function. The empirical process is defined by D-n(x) = rootn/F-n(x)-F(x)\. In this note, upper bounds are found for E(D-n) and for E(e(tDn)), where D-n = sup(x)D(n)(x). An extension to the two sample case is indicated. As one application, upper bounds are obtained for E(W-n), where, W-n = sup(x)\(f) over cap (n)(x) - f(x)\, with (f) over cap (n)(x) = (1/nh) Sigma(i=1)(n) k((x - X-i)/h) is the celebrated "kernel" density estimate of f (x), the density corresponding to F(x) and an optimal bandwidth is selected based on Wn. Analogous results for the kernel estimate of F are also mentioned. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:215 / 220
页数:6
相关论文
共 50 条