Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

被引:933
|
作者
Cui, Li-Feng [1 ]
Yang, Yuan [1 ]
Hsu, Ching-Mei [1 ]
Cui, Yi [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
关键词
NANOCOMPOSITE ANODES; SI ANODE; PERFORMANCE; INSERTION;
D O I
10.1021/nl901670t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of similar to 2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of similar to 4 mAh/cm(2), which is comparable to commercial battery values.
引用
收藏
页码:3370 / 3374
页数:5
相关论文
共 50 条
  • [1] Core-shell structured electrode materials for lithium ion batteries
    H. P. Zhang
    L. C. Yang
    L. J. Fu
    Q. Cao
    D. L. Sun
    Y. P. Wu
    R. Holze
    Journal of Solid State Electrochemistry, 2009, 13 : 1521 - 1527
  • [2] Core-shell structured electrode materials for lithium ion batteries
    Zhang, H. P.
    Yang, L. C.
    Fu, L. J.
    Cao, Q.
    Sun, D. L.
    Wu, Y. P.
    Holze, R.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (10) : 1521 - 1527
  • [3] Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries
    Kim, Jung Sub
    Pfleging, Wilhelm
    Kohler, Robert
    Seifert, Hans Juergen
    Kim, Tae Yong
    Byun, Dongjin
    Jung, Hun-Gi
    Choi, Wonchang
    Lee, Joong Kee
    JOURNAL OF POWER SOURCES, 2015, 279 : 13 - 20
  • [4] Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries
    Sourice, Julien
    Bordes, Arnaud
    Boulineau, Adrien
    Alper, John P.
    Franger, Sylvain
    Quinsac, Axelle
    Habert, Aurelie
    Leconte, Yann
    De Vito, Eric
    Porcher, Willy
    Reynaud, Cecile
    Herlin-Boime, Nathalie
    Haon, Cedric
    JOURNAL OF POWER SOURCES, 2016, 328 : 527 - 535
  • [5] Carbon nanofiber/cobalt oxide nanopyramid core-Shell nanowires for high-performance lithium-ion batteries
    An, Geon-Hyoung
    Ahn, Hyo-Jin
    JOURNAL OF POWER SOURCES, 2014, 272 : 828 - 836
  • [6] MnO@Carbon Core-Shell Nanowires as Stable High-Performance Anodes for Lithium-Ion Batteries
    Li, Xiaowei
    Xiong, Shenglin
    Li, Jingfa
    Liang, Xin
    Wang, Jiazhao
    Bai, Jing
    Qian, Yitai
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (34) : 11310 - 11319
  • [7] Silicon/carbon composite microspheres with hierarchical core-shell structure as anode for lithium ion batteries
    Li, Shuo
    Qin, Xianying
    Zhang, Haoran
    Wu, Junxiong
    He, Yan-Bing
    Li, Baohua
    Kang, Feiyu
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 49 : 98 - 102
  • [8] Core-shell materials for lithium ion batteries
    Ren Manman
    Zhou Zhen
    Gao Xueping
    Yan Jie
    PROGRESS IN CHEMISTRY, 2008, 20 (05) : 771 - 777
  • [9] Porous structure SnSb/amorphous carbon core-shell composite as high capacity anode materials for lithium ion batteries
    Dawei Sun
    Bonan An
    Beibei Zhang
    Qiang Ru
    Xianhua Hou
    Shejun Hu
    Journal of Solid State Electrochemistry, 2014, 18 : 2573 - 2579
  • [10] Porous structure SnSb/amorphous carbon core-shell composite as high capacity anode materials for lithium ion batteries
    Sun, Dawei
    An, Bonan
    Zhang, Beibei
    Ru, Qiang
    Hou, Xianhua
    Hu, Shejun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (09) : 2573 - 2579