Machine Vision Using Combined Frame-based and Event-based Vision Sensor

被引:0
|
作者
Leow, H. S. [1 ]
Nikolic, K. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, Ctr Bioinspired Technol, London SW7 2AZ, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional synchronous imaging sensor provides frame-based video with a relatively high degree of temporal redundancy. On the other hand, activity-driven, event-based imaging sensor provides low resolution, monochromatic video feeds with low latency. This paper aims to integrate the output from both camera systems to leverage on the strengths of both imaging sensors. We describe and demonstrate various video processing applications achieved using the combined camera system. The applications include a novel video-compression scheme, foveated imaging on the moving objects, object tracking and velocity estimation. All demonstrations are achieved through the integration of data outputs from the Dynamic Vision Sensor (DVS128) and conventional frame-based QVGA (320x240) PS3-Eye webcam, in the jAER software.
引用
收藏
页码:706 / 709
页数:4
相关论文
共 50 条
  • [1] Event-based Image Processing using a Neuromorphic Vision Sensor
    Garcia Franco, Jesus Armando
    del Valle Padilla, Juan Luis
    Ortega Cisneros, Susana
    [J]. 2013 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2013,
  • [2] Mixed Event-Frame Vision System for Daytime Preceding Vehicle Taillight Signal Measurement Using Event-Based Neuromorphic Vision Sensor
    Liu, Zhengfa
    Chen, Guang
    Wu, Ya
    Du, Jiatong
    Conradt, Jorg
    Knoll, Alois
    [J]. JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [3] UAV human teleoperation using event-based and frame-based cameras
    Rodriguez-Gomez, J. P.
    Tapia, R.
    Gomez Eguiluz, A.
    Martinez-de Dios, J. R.
    Ollero, A.
    [J]. 1ST AIRPHARO WORKSHOP ON AERIAL ROBOTIC SYSTEMS PHYSICALLY INTERACTING WITH THE ENVIRONMENT (AIRPHARO 2021), 2021,
  • [4] Development status and trend of event-based vision sensor
    Fang Ying-hong
    Xu Wei
    Piao Yong-jie
    Feng Ru-peng
    Zheng Liang-liang
    [J]. CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (12) : 1664 - 1673
  • [5] Human vs. Computer Slot Car Racing using an Event and Frame-Based DAVIS Vision Sensor
    Delbruck, T.
    Pfeiffer, M.
    Juston, R.
    Orchard, G.
    Mueggler, E.
    Linares-Barranco, A.
    Tilden, M. W.
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 2409 - 2412
  • [6] Event-Based Vision: A Survey
    Gallego, Guillermo
    Delbruck, Tobi
    Orchard, Garrick Michael
    Bartolozzi, Chiara
    Taba, Brian
    Censi, Andrea
    Leutenegger, Stefan
    Davison, Andrew
    Conradt, Jorg
    Daniilidis, Kostas
    Scaramuzza, Davide
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) : 154 - 180
  • [7] Event-Based American Sign Language Recognition Using Dynamic Vision Sensor
    Wang, Yong
    Zhang, Xian
    Wang, Yanxiang
    Wang, Hongbin
    Huang, Chanying
    Shen, Yiran
    [J]. WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT III, 2021, 12939 : 3 - 10
  • [8] Dynamic Resolution Event-based Temporal Contrast Vision Sensor
    Guo, Heng
    Huang, Jing
    Guo, Menghan
    Chen, Shoushun
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 1422 - 1425
  • [9] Event-based Features for Robotic Vision
    Lagorce, Xavier
    Ieng, Sio-Hoi
    Benosman, Ryad
    [J]. 2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 4214 - 4219
  • [10] REAL-TIME MOTION ESTIMATION BASED ON EVENT-BASED VISION SENSOR
    Lee, Jun Haeng
    Lee, Kyoobin
    Ryu, Hyunsurk
    Park, Paul K. J.
    Shin, Chang-Woo
    Woo, Jooyeon
    Kim, Jun-Seok
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 204 - 208