Analytical and experimental study on noncontact sensing with embedded fiber-optic sensors in rotating metal parts

被引:13
|
作者
Li, XC [1 ]
Prinz, F
机构
[1] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
embedded sensor; fiber Bragg grating (FBG) sensor; layered manufacturing; noncontact sensing;
D O I
10.1109/JLT.2004.829231
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Layered manufacturing can build functional metal parts with fiber-optic sensors placed within the structure and fully embedded. These sensors can be used to gain data for validating or improving designs during the prototype stage or to obtain information on the performance and structural integrity of functional components in service in hostile environment. This paper presents a new technique for noncontact thermal strain measurement in rotating metal components with embedded fiber Bragg grating sensors. Two different tunable laser diodes were incorporated into the sensing system to monitor the Bragg grating wavelength shifts, and thus the thermal strain can be determined. Experimental results validate the feasibility of this technique. The noncontact sensing system could provide a useful sensing tool to optimize the design for turbine, blades and other rotary metal tooling, especially those exposed to hostile environments.
引用
收藏
页码:1720 / 1727
页数:8
相关论文
共 50 条
  • [1] Fiber-optic sensors embedded in interstate highway
    Shuster, LA
    [J]. CIVIL ENGINEERING, 2004, 74 (08): : 30 - 30
  • [2] Fiber-optic strain sensing on rotating shafts
    Narendran, N
    Corbo, M
    Tang, L
    [J]. INTELLIGENT SHIPS SYMPOSIUM II - SYMPOSIUM PROCEEDINGS, 1996, : 107 - 121
  • [3] Embedded fiber-optic sensors in reinforced concrete beams
    Cimellaro, G. P.
    Domaneschi, M.
    Morgese, M.
    Ansari, F.
    Inaudi, D.
    [J]. ADVANCES IN ENGINEERING MATERIALS, STRUCTURES AND SYSTEMS: INNOVATIONS, MECHANICS AND APPLICATIONS, 2019, : 2084 - 2089
  • [4] Experimental analysis of fiber-optic displacement sensors
    Li, XJ
    Zhang, ZH
    Yu, YJ
    Lin, QS
    [J]. INTERNATIONAL CONFERENCE ON SENSOR TECHNOLOGY (ISTC 2001), PROCEEDINGS, 2001, 4414 : 334 - 337
  • [5] Study on the embedded fiber-optic strain sensors of white light interference type
    Zhang, W. T.
    Dai, J. Y.
    Sun, B. C.
    Du, Y. L.
    [J]. ISISS '2007: PROCEEDINGS OF THE INNOVATION AND SUSTAINABILITY OF STRUCTURES, VOLS 1 AND 2, 2008, : 1465 - 1469
  • [6] Demodulation of FBG sensors embedded in a fiber-optic Sagnac loop
    Kim, Hyunjin
    Lee, JuneHo
    Lee, Jong-kil
    Song, Minho
    [J]. OPTICAL SENSING AND DETECTION II, 2012, 8439
  • [7] Feasibility study of embedded fiber-optic strain sensing for composite propeller blades
    Zetterlind, VE
    Watkins, SE
    Spoltman, MW
    [J]. SMART STRUCTURES AND MATERIALS 2001: INDUSTRIAL AND COMMERCIAL APPLICATIONS OF SMART STRUCTURES TECHNOLOGIES, 2001, 4332 : 143 - 152
  • [8] A Study of Relative Humidity Fiber-Optic Sensors
    Batumalay, Malathy
    Harun, Sulaiman Wadi
    Irawati, Ninik
    Ahmad, Harith
    Arof, Hamzah
    [J]. IEEE SENSORS JOURNAL, 2015, 15 (03) : 1945 - 1950
  • [9] Fiber-Optic Breath Sensors: A Comparison Study
    Nedoma, Jan
    Fajkus, Marcel
    Martinek, Radek
    [J]. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING, 2019, 40 : 56 - 63
  • [10] Fiber-optic Bragg grating sensors for hydrogen gas sensing
    Sutapun, B
    Tabib-Azar, M
    Kazemi, A
    [J]. OPTICAL ENGINEERING FOR SENSING AND NANOTECHNOLOGY (ICOSN'99), 1999, 3740 : 278 - 283