Gaussian process modelling of asteroseismic data

被引:34
|
作者
Brewer, B. J. [1 ,2 ]
Stello, D. [1 ]
机构
[1] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
methods: statistical; stars: individual: xi Hydrae; stars: oscillations; SOLAR-LIKE OSCILLATIONS; P-MODES; XI-HYDRAE; PARAMETERS; AMPLITUDES; STARS; HYA;
D O I
10.1111/j.1365-2966.2009.14679.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The measured properties of stellar oscillations can provide powerful constraints on the internal structure and composition of stars. To begin this process, oscillation frequencies must be extracted from the observational data, typically time series of the star's brightness or radial velocity. In this paper, a probabilistic model is introduced for inferring the frequencies and amplitudes of stellar oscillation modes from data, assuming that there is some periodic character to the oscillations, but that they may not be exactly sinusoidal. Effectively, we fit damped oscillations to the time series, and hence the mode lifetime is also recovered. While this approach is computationally demanding for large time series (> 1500 points), it should at least allow improved analysis of observations of solar-like oscillations in subgiant and red giant stars, as well as sparse observations of semiregular stars, where the number of points in the time series is often low. The method is demonstrated on simulated data and then applied to radial velocity measurements of the red giant star. Hydrae, yielding a mode lifetime between 0.41 and 2.65 d with 95 per cent posterior probability. The large frequency separation between modes is ambiguous, however we argue that the most plausible value is 6.3 mu Hz, based on the radial velocity data and the star's position in the Hertzsprung-Russell diagram.
引用
收藏
页码:2226 / 2233
页数:8
相关论文
共 50 条
  • [1] MODELLING TRANSPORT PROCESSES IN STELLAR INTERIORS USING ASTEROSEISMIC DATA
    Eggenberger, P.
    ASTEROSEISMOLOGY AND NEXT GENERATION STELLAR MODELS: EVRY SCHATZMAN SCHOOL 2014, 2016, 73-74 : 261 - 308
  • [2] Gaussian process modelling with Gaussian mixture likelihood
    Daemi, Atefeh
    Kodamana, Hariprasad
    Huang, Biao
    JOURNAL OF PROCESS CONTROL, 2019, 81 : 209 - 220
  • [3] Data Modelling with Gaussian Process in Sensor Networks for Urban Environmental Monitoring
    Liu, Xiuming
    Xi, Teng
    Ngai, Edith
    2016 IEEE 24TH INTERNATIONAL SYMPOSIUM ON MODELING, ANALYSIS AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MASCOTS), 2016, : 457 - 462
  • [4] Foreground modelling via Gaussian process regression: an application to HERA data
    Ghosh, Abhik
    Mertens, Florent
    Bernardi, Gianni
    Santos, Mario G.
    Kern, Nicholas S.
    Carilli, Christopher L.
    Grobler, Trienko L.
    Koopmans, Leon V. E.
    Jacobs, Daniel C.
    Liu, Adrian
    Parsons, Aaron R.
    Morales, Miguel F.
    Aguirre, James E.
    Dillon, Joshua S.
    Hazelton, Bryna J.
    Smirnov, Oleg M.
    Gehlot, Bharat K.
    Matika, Siyanda
    Alexander, Paul
    Ali, Zaki S.
    Beardsley, Adam P.
    Benefo, Roshan K.
    Billings, Tashalee S.
    Bowman, Judd D.
    Bradley, Richard F.
    Cheng, Carina
    Chichura, Paul M.
    DeBoer, David R.
    Acedo, Eloy de Lera
    Ewall-Wice, Aaron
    Fadana, Gcobisa
    Fagnoni, Nicolas
    Fortino, Austin F.
    Fritz, Randall
    Furlanetto, Steve R.
    Gallardo, Samavarti
    Glendenning, Brian
    Gorthi, Deepthi
    Greig, Bradley
    Grobbelaar, Jasper
    Hickish, Jack
    Josaitis, Alec
    Julius, Austin
    Igarashi, Amy S.
    Kariseb, MacCalvin
    Kohn, Saul A.
    Kolopanis, Matthew
    Lekalake, Telalo
    Loots, Anita
    MacMahon, David
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (03) : 2813 - 2826
  • [5] Understanding and Visualisation of Geographic Mesh Similarity by Trajectory Data and Gaussian Process Modelling
    Wataru Nakanishi
    International Journal of Intelligent Transportation Systems Research, 2020, 18 : 35 - 42
  • [7] A Gaussian process framework for modelling stellar activity signals in radial velocity data
    Rajpaul, V.
    Aigrain, S.
    Osborne, M. A.
    Reece, S.
    Roberts, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 452 (03) : 2269 - 2291
  • [8] On inverting asteroseismic data
    Thompson, MJ
    Christensen-Dalsgaard, J
    STELLAR STRUCTURE AND HABITABLE PLANET FINDING, PROCEEDINGS, 2002, 485 : 95 - 101
  • [9] Asteroseismic modelling of Procyon A: Preliminary results
    Dogan, G.
    Bonanno, A.
    Bedding, T. R.
    Campante, T. L.
    Christensen-Dalsgaard, J.
    Kjeldsen, H.
    ASTRONOMISCHE NACHRICHTEN, 2010, 331 (9-10) : 949 - 951
  • [10] Asteroseismic modelling of the Binary HD 176465
    Nsamba, B.
    Monteiro, M. J. P. F. G.
    Campante, T. L.
    Reese, D. R.
    White, T. R.
    Garcia Hernandez, A.
    Jiang, C.
    SEISMOLOGY OF THE SUN AND THE DISTANT STARS 2016-USING TODAY'S SUCCESSES TO PREPARE THE FUTURE, 2017, 160