Clustering Geospatial Objects via Hidden Markov Random Fields

被引:0
|
作者
Sato, Makoto
Imahara, Shuuichiro
机构
关键词
D O I
10.1109/ICDM.2008.70
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the Problem of clustering objects located and correlated geographically and containing multiple attributes. For the clustering problem, it is necessary to consider both the similarities of the attributes and the spatial dependencies of the objects. A new clustering framework using hidden. Markov random fields (HMRFs) and Gaussian distributions and new potential models of HMRFs for irregularly located geospatial objects are proposed in this paper. Experimental results for systematic data and two real-world data showed the availability of the proposed algorithms.
引用
收藏
页码:1013 / 1018
页数:6
相关论文
共 50 条
  • [1] HIDDEN MARKOV RANDOM FIELDS
    Kuensch, Hans
    Geman, Stuart
    Kehagias, Athanasios
    [J]. ANNALS OF APPLIED PROBABILITY, 1995, 5 (03): : 577 - 602
  • [2] Bayesian Clustering Using Hidden Markov Random Fields in Spatial Population Genetics
    Francois, Olivier
    Ancelet, Sophie
    Guillot, Gilles
    [J]. GENETICS, 2006, 174 (02) : 805 - 816
  • [3] Estimation for hidden Markov random fields
    Elliott, RJ
    Aggoun, L
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) : 343 - 351
  • [4] Approximating hidden Gaussian Markov random fields
    Rue, H
    Steinsland, I
    Erland, S
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 877 - 892
  • [5] Learning Heterogeneous Hidden Markov Random Fields
    Liu, Jie
    Zhang, Chunming
    Burnside, Elizabeth
    Page, David
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 576 - 584
  • [6] DOMAIN ADAPTATION WITH HIDDEN MARKOV RANDOM FIELDS
    Jacobs, Jan-Pieter
    Thoonen, Guy
    Tuia, Devis
    Camps-Valls, Gustavo
    Haest, Birgen
    Scheunders, Paul
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3112 - 3115
  • [7] CONTEXTUAL UNMIXING OF GEOSPATIAL DATA BASED ON MARKOV RANDOM FIELDS AND CONDITIONAL RANDOM FIELDS
    Nishii, Ryuei
    Ozaki, Tomohiko
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 478 - +
  • [8] Bayesian nonparametric priors for hidden Markov random fields
    Hongliang Lü
    Julyan Arbel
    Florence Forbes
    [J]. Statistics and Computing, 2020, 30 : 1015 - 1035
  • [9] Bayesian nonparametric priors for hidden Markov random fields
    Lu, Hongliang
    Arbel, Julyan
    Forbes, Florence
    [J]. STATISTICS AND COMPUTING, 2020, 30 (04) : 1015 - 1035
  • [10] Detecting Markov random fields hidden in white noise
    Arias-Castro, Ery
    Bubeck, Sebastien
    Lugosi, Gabor
    Verzelen, Nicolas
    [J]. BERNOULLI, 2018, 24 (4B) : 3628 - 3656