Developing a general post-classification framework for land-cover mapping improvement using high-spatial-resolution remote sensing imagery

被引:0
|
作者
Lv, ZhiYong [1 ]
Zhang, Xubing [2 ]
Benediktsson, Jon Atli [3 ]
机构
[1] XiAn Univ Technol, Sch Comp Sci & Engn, Xian 710048, Peoples R China
[2] China Univ Geosci, Sch Publ Adm, Dept Reg Planning & Informat Technol, Wuhan, Peoples R China
[3] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CONTEXTUAL INFORMATION; MORPHOLOGICAL PROFILES; HYPERSPECTRAL IMAGES; EXTRACTION; FUSION;
D O I
10.1080/2150704X.2017.1306137
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this letter, a general post-classification framework (GPCF) is proposed to enhance initial results. Traditional post-classification techniques usually improve classification accuracy by considering the contextual information in a single classified image. In contrast to traditional techniques, the proposed GPCF aims to integrate multi-source classified images obtained through different classification approaches. In the proposed framework, the label of a central pixel is determined by its surrounding voting in each classified image. In this manner, the GPCF can integrate the advantages of different classification approaches. In our experiments, a hyperspectral image and an aerial image with high spatial resolution (HSR) are used to evaluate the proposed GPCF. Compared with two relevant post-classification approaches, the proposed framework can provide a land-cover map with lower noise in visual comparison and achieve higher classification accuracies. Therefore, the proposed GPCF presents better performance in HSR image classification.
引用
收藏
页码:607 / 616
页数:10
相关论文
共 50 条
  • [1] Adaptive region-based post-classification framework for land-cover mapping improvement using very high spatial resolution optical imagery
    Lv, ZhiYong
    Li, GuangFei
    Yan, JiXing
    Benediktsson, Jon Atli
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (01)
  • [2] URBAN LAND-COVER CLASSIFICATION FROM HIGH RESOLUTION REMOTE SENSING IMAGERY
    Bedawi, Safaa M.
    Moustafa, Mohamed N.
    Kamel, Mohamed S.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3144 - 3147
  • [3] Land-Cover Classification Using Deep Learning with High-Resolution Remote-Sensing Imagery
    Fayaz, Muhammad
    Nam, Junyoung
    Dang, L. Minh
    Song, Hyoung-Kyu
    Moon, Hyeonjoon
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [4] Per-pixel classification of high spatial resolution satellite imagery for urban land-cover mapping
    Hester, David Barry
    Cakir, Halil I.
    Nelson, Stacy A. C.
    Khorram, Siamak
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (04): : 463 - 471
  • [5] Land-Use/Land-Cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery
    Zhu, Qiqi
    Guo, Xi
    Deng, Weihuan
    Shi, Sunan
    Guan, Qingfeng
    Zhong, Yanfei
    Zhang, Liangpei
    Li, Deren
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 184 : 63 - 78
  • [6] A Land-cover Classification Method of High-resolution Remote Sensing Imagery Based on Convolution Neural Network
    Wang, Yuhan
    Gu, Lingjia
    Ren, Ruizhi
    Zheng, Xu
    Fan, Xintong
    EARTH OBSERVING SYSTEMS XXIII, 2018, 10764
  • [7] A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification
    Wang, Guizhou
    Liu, Jianbo
    He, Guojin
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [8] Land-Cover Classification With High-Resolution Remote Sensing Images Using Interactive Segmentation
    Xu, Leilei
    Liu, Yujun
    Shi, Shanqiu
    Zhang, Hao
    Wang, Dan
    IEEE ACCESS, 2023, 11 : 6735 - 6747
  • [9] Scale Aware Adaptation for Land-Cover Classification in Remote Sensing Imagery
    Deng, Xueqing
    Zhu, Yi
    Tian, Yuxin
    Newsam, Shawn
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2159 - 2168
  • [10] Land-cover classification with high-resolution remote sensing images using transferable deep models
    Tong, Xin-Yi
    Xia, Gui-Song
    Lu, Qikai
    Shen, Huanfeng
    Li, Shengyang
    You, Shucheng
    Zhang, Liangpei
    REMOTE SENSING OF ENVIRONMENT, 2020, 237