Quaternion higher-order spectra and their invariants for color image recognition

被引:3
|
作者
Jia, Xiaoning [1 ]
Yang, Hang [2 ]
Ma, Siliang [1 ]
Song, Dongzhe [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Jilin Province, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
关键词
Color image recognition; Quaternion; Bispectrum; Higher-order spectra invariant; Quaternion principal component analysis; HYPERCOMPLEX FOURIER-TRANSFORMS; PATTERN-RECOGNITION; MOMENT INVARIANTS; BISPECTRAL ANALYSIS; DESCRIPTORS; INPUTS;
D O I
10.1016/j.optlaseng.2014.01.008
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper describes an invariants generation method for color images, which could be a useful tool in color object recognition tasks. First, by using the algebra of quaternions, we introduce the definition of quaternion higher-order spectra (QHOS) in the spatial domain and derive its equivalent form in the frequency domain. Then, QHOS invariants with respect to rotation, translation, and scaling transformations for color images are constructed using the central slice theorem and quaternion bispectral analysis. The feature data are further reduced to a smaller set using quatemion principal component analysis. The proposed method can deal with color images in a holistic manner, and the constructed QHOS invariants are highly immune to background noise. Experimental results show that the extracted QHOS invariants form compact and isolated clusters, and that a simple minimum distance classifier can yield high recognition accuracy. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 39
页数:12
相关论文
共 50 条
  • [1] Higher-order spectra (HOS) invariants for shape recognition
    Shao, Y
    Celenk, M
    [J]. PATTERN RECOGNITION, 2001, 34 (11) : 2097 - 2113
  • [2] Quaternion higher-order singular value decomposition and its applications in color image processing
    Miao, Jifei
    Kou, Kit Ian
    Cheng, Dong
    Liu, Wankai
    [J]. INFORMATION FUSION, 2023, 92 : 139 - 153
  • [3] Quaternion Zernike moments and their invariants for color image analysis and object recognition
    Chen, B. J.
    Shu, H. Z.
    Zhang, H.
    Chen, G.
    Toumoulin, C.
    Dillenseger, J. L.
    Luo, L. M.
    [J]. SIGNAL PROCESSING, 2012, 92 (02) : 308 - 318
  • [4] CALCULATION OF HIGHER-ORDER SENSITIVITIES AND HIGHER-ORDER SENSITIVITY INVARIANTS
    GEHER, K
    SOLYMOSI, J
    [J]. PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1972, 16 (03): : 325 - 330
  • [5] Quaternion Exponent Moments and Their Invariants for Color Image
    Yang, Hong-ying
    Liang, Lin-lin
    Li, Yong-wei
    Wang, Xiang-yang
    [J]. FUNDAMENTA INFORMATICAE, 2016, 145 (02) : 189 - 205
  • [6] PATTERN-RECOGNITION USING INVARIANTS DEFINED FROM HIGHER-ORDER SPECTRA - ONE-DIMENSIONAL INPUTS
    CHANDRAN, V
    ELGAR, SL
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (01) : 205 - 212
  • [7] New higher-order equiaffine invariants
    Stancu, Alina
    Werner, Elisabeth
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) : 221 - 235
  • [8] New higher-order equiaffine invariants
    Alina Stancu
    Elisabeth Werner
    [J]. Israel Journal of Mathematics, 2009, 171 : 221 - 235
  • [9] HIGHER-ORDER INVARIANTS IN EXTENDED SUPERGRAVITY
    DEWIT, B
    FERRARA, S
    [J]. PHYSICS LETTERS B, 1979, 81 (3-4) : 317 - 320
  • [10] HIGHER-ORDER INVARIANTS IN EXTENDED SUPERGRAVITY
    HOWE, P
    LINDSTROM, U
    [J]. NUCLEAR PHYSICS B, 1981, 181 (03) : 487 - 501