Pullbacks of Klingen-Eisenstein series attached to Jacobi cusp forms

被引:0
|
作者
Mizumoto, Shin-ichiro [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
SIEGEL MODULAR-FORMS; ZETA-FUNCTIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a Siegel cusp form of degree n >= 2 and phi be a Jacobi cusp form of degree r ( < n) and index T, where T is a kernel form of size n - r. Suppose F and phi are eigenfunctions of the Hecke operators. Let [phi](r)(n) ((Z, w), s) be the Klingen-Eisenstein series of degree n attached to phi. We show that the Petersson inner product ([phi](r)(n)((Z, 0), s), F(Z)) is essentially equal to the quotient of the standard L-function of F and that of phi. Our result is a generalization of the result of Heim [9] which treated the case n = 2, r = 1.
引用
收藏
页码:379 / 402
页数:24
相关论文
共 50 条