PSC Galois extensions of Hilbertian fields

被引:0
|
作者
Geyer, WD
Jarden, M
机构
[1] Inst Math, D-91054 Erlangen, Germany
[2] Tel Aviv Univ, Sch Math, IL-69978 Tel Aviv, Israel
关键词
pseudo-S-closed; Hilbertian fields; stable fields; Rumeley existence theorem;
D O I
10.1002/1522-2616(200203)236:1<119::AID-MANA119>3.0.CO;2-U
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following result: Theorem. Let K be a countable Hilbertian field, S a finite set of local primes of K, and e greater than or equal to 0 an integer. Then, for almost all sigma is an element of G(K)(e), the field K-s [sigma] boolean AND K-tot,K-S is PSC. Here a local prime is an equivalent class p of absolute values of K whose completion is a local field, (K) over bar (p). Then K-p = K-s boolean AND (K) over bar (p) and K-tot,K-S = boolean AND(pis an element ofS) boolean AND(sigmais an element ofG(K)) K-p(sigma). G(K) stands for the absolute Galois group of K. For each sigma = (sigma(1),...,sigma(e)) is an element of G(K)(e) we denote the fixed field of sigma(1),...,sigma(e) in K-s by K-s(sigma). The maximal Galois extension of K in K-s(sigma) is K-s[sigma]. Finally "almost all" means "for all but a set of Haar measure zero".
引用
收藏
页码:119 / 160
页数:42
相关论文
共 50 条
  • [1] Random Galois extensions of Hilbertian fields
    Bary-Soroker, Lior
    Fehm, Arno
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2013, 25 (01): : 31 - 42
  • [2] COMPOSITUM OF GALOIS EXTENSIONS OF HILBERTIAN FIELDS
    HARAN, D
    JARDEN, M
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1991, 24 (06): : 739 - 748
  • [3] ABELIAN VARIETIES AND GALOIS EXTENSIONS OF HILBERTIAN FIELDS
    Thornhill, Christopher
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2013, 12 (02) : 237 - 247
  • [4] ON THE GALOIS GROUP OF HILBERTIAN FIELDS
    CHATZIDAKIS, Z
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1986, 51 (02) : 484 - 484
  • [5] Hilbertian fields and Galois representations
    Bary-Soroker, Lior
    Fehm, Arno
    Wiese, Gabor
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 712 : 123 - 139
  • [6] Strong approximation theorem for absolutely integral varieties over PSC Galois extensions of global fields
    Geyer, Wulf-Dieter
    Jarden, Moshe
    Razon, Aharon
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 1447 - 1529
  • [7] Galois extensions and O*-fields
    Evans, Kenneth
    Ma, Jingjing
    [J]. POSITIVITY, 2023, 27 (02)
  • [8] SEMINUCLEAR EXTENSIONS OF GALOIS FIELDS
    HUGHES, DR
    KLEINFELD, E
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1960, 82 (02) : 389 - 392
  • [9] ALGEBRAIC EXTENSIONS OF FINITE CORANK OF HILBERTIAN FIELDS
    JARDEN, M
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1974, 18 (03) : 279 - 307
  • [10] Hilbertian fields under separable algebraic extensions
    Haran, D
    [J]. INVENTIONES MATHEMATICAE, 1999, 137 (01) : 113 - 126